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PREFACE

Dianzhou Zhang, Toshio Sawada, and Jerry P. Becker, Co-Organizers

These are the Proceedings of the China - Japan - U.S. Seminar on Mathematical Education
that was held October 4-8, 1993 in two sessions - the first session at East China Normal
University in Shanghai, and the second in Weifang City, Shandong Province. The closing
ceremony was held in Qingdao. The Seminar and these Proceedings mark the importance placed
on mathematics education in the three countries, and on problem solving in school mathematics, in
particular.

We believe, with all the delegates, that the Seminar was a success. Interesting papers and
thought-provoking discussions filled the Seminar agenda. It was an important and enjoyable event
held in excellent facilities, and the event marked the mutual and increasing interest by mathematics
educators in all three countries in extending communication, exchange and cross-cultural
collaboration in research.

We want to extend our heartiest appreciation to all the delegates who, through their paper
presentations and the discussions, accounted for the quality of interaction during the Seminar. We
need to also express appreciation to the Chinese National Science Foundation (CNSF), the U.S.
National Science Foundation (NSF) and the Japan Society for the Prumotion of Science (JSPS)
which, through their funding programs, made this Seminar possible. We also express appreciation
to Mr. Xue Mao Lin for his generous support of the Seminar.

No tri-national seminar can be successful without competent translators. In this respect,
the Seminar was exceedingly fortunate to have Dr. Du Wei and Miss Qin Zhang as translators.

Not only were they highly knowledgeable about the intricacies of translating, but they were
friendly, amiable individuals who cooperatively worked patiently and tirelessly to smocth
communication during the Seminar sessions. To both we extend our profound appreciation. We
also need to thank the delegates themselves, all of whom prepared their papers in English; they also
assisted with communication throughout the Seminar in a very cooperative manner.

vi
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This seminar was an important one and perhaps it is useful to describe its origin. The Co-
Organizers have known each other for many years and have met on various occasions in China,
Japan, the U.S., or elsewhere at professional meetings. In particular, they had a meeting at the
Seventh International Congress on Mathematics Education (ICME-7) in Quebec, Canada and
discussed the possibility of this Seminar. At that time, conversations were also held with other
professionals about the appropriateness, timing, and content of the Seminar that would deal with
problem solving. All agreed that such a seminar would be useful, as well as timely, and it was
decided to seek support by submitting proposals simultaneously to the respective national agencies.
The proposals were reviewed and recommended for support. There ensued preparation on all three
sides covering a time period of one vear, culminating in our Seminar at East China Normal
University.

We need to express our appreciation to all the Chinese colleagues who, in a warm and
friendly way, welcomed the U.S. and Japanese delegates to China and to the Seminar. We also
thank the Chinese colleagues at Qufu Normal University who hosted the seminar participants while
they were in Qufu. They were gracious, cooperative and helpful in numerous ways. We also
want to express appreciation 1o Mr. Xuhui Li, a graduate student in the Department of Mathematics
at East China Normal University, who, with his student colleagues, worked long, tedious hours
to make sure that the Seminar was a success. To Ms. Joan Griffin goes our heartfelt appreciation
for transporting the software disks to Microsoft Work< and then organizing the papers and making
edited changes. Her enormous energy and friendly competence in preparing the first draft was
instrumental in getting the job done. To Ms. Connie Johnson goes our appreciation for typing
further edited changes, proofreading and printing the final manuscript - without her competent

assistance, the work would not have been completed.

|

vii




It is our earnest hope that these Proceedings will be of interest to mathematics educators not
only in the three countries, but to others around the world who share our desire to advance the

cause of an improved mathematics education for children and students at all school levels.

Dianzhou Zhang Toshio Sawada Jerry P. Becker

January, 1996
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SEMINAR PURPOSES

There has been considerable interest and a large number of activities in mathematics
education in China, Japan and the United States in recent years. Mathematics educators in all three
countries are exploring ways in which the teaching and learning of mathematics can be improved in
all areas of the school mathematics curriculum. But the area of greatest interest, and the area in
which mathematics educators of the three countries are focusing their attention, is problc. . solving.
Accordingly, this is the focus for the present Seminar.

During the discussions between Chinese, Japanese and American mathematics educators,
starting as far back as 1977 and continuing through 1992, a great and mutual interest was
expressed in bringing mathe:natics educators in the three countries together to improve
communication and propose further research. A joint China - Japan - U.S. Serninar seemed like an
excellent manner by which to do this.

The main purposes of the Seminar were set as follows:

1. to examine the present states of problem solving in school mathematics in China, Japan,
and the U.S,,

2. to explore classroom practices in problem solving in China, Japan, and the U.S,,

3. toexamine existing data concerning problem solving in mathematics education

research,

4. To explore teacher training aspects of problem solving in school mathematics, and

overall

5. to provide a context in which scholars from the three countries can meet, talk,

and pursue mutual interests and future interaction.
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OPENING CEREMONY

Shanghai Session
East China Normal University
Monday, October 4, 1993
Professor Zhang:

Professors Becker and Sawada, colleagues and friends:

The U.S. - Japan - China Seminar on Mathematical Education now begins. On behalf of
all the Chinese delegates, I would like to express our heartfelt thanks to all of you for your
attendance and participation. It is our honor to have you with us. We are very happy to meet
Professor Becker, Professor Sawada and many other old friends; meanwhile, it is also very
nice to become acquainted with many new friends.

We express thanks for the support provided for the seminar by the National Science
Foundation, both in the United States and China, and the Japan Society for the Promotion of
Science. Due to this support, we are able to organize this joint seminar on mathematics
education. As background and in preparation, the Co-Organizers had a short meeting in
Quebec when ICME-7 was held there in 1992. "Problem solving” was singled out for the
theme of this seminar. It is rea'ly a very important topic in which we are all interested.

China is a developing country, and the situation of mathematics education is also
developing. When we reflect back on the past, Chinese mathematics educators have learned a
lot from Japan from the early part of this century, and then from the United States after the
1920s, and the USSR had a considerable influence upon China in the 1950s. Now, we all are
confronted with a changing world. Mathematics education is usually considered as a key factor
in social development. Therefore, I think that this seminar is a significant event in the
exchange between mathematics educators from the three countries.

The seminar will be divided into two sessions: the Shanghai Session and the Weifang
Session. I hope you will enjoy your stay here at the East China Normal University in

Shanghai.




LEARNING HOW TO INTEGRATE PROBLEM SOLVING INTO
MATHEMATICS TEACHING

Jerry P. Becker

Southern Illinois University at Carbondale

Introduction

When mathematics ¢ducators think about problem solving, they probably think of George
Polya and his widely known book How to Solve It (1945), his subsequent books on Mathematics
and Plausible Reasoning : Induction and Analogy in Mathematics and Patterns of Plausible
Inference (volumes 1 and 2, respectively, 1954) that deal with mathematical thinking and
Mathematical Discovery (1962, 1965). Everyone agrees that Polya has had a significant influence
on the thinking of mathematics educators about mathematical thinking. He has also had a similar
influence on teacher education and pedagogy in the U.S. and elsewhere. Polya's works comprise
a study of heuristic, in How fo Solve It he outlined a framework for problem solving:
Understanding the Problem, Devising a Plan, Carrying out the Plan, and Looking Back. With this
framework came suggestions for solving problems. (For an in-depth and philosophical description
of Polya's approach, the reader is referred to Schoenfeld (1987).)

To say the least, Polya's works provided the main ingredient for helping teachers at both the
university and school levels to teach problem solving. They provided a large inventory of
problems irom several areas of mathematics. Teachers who studied from these books and worked
the problems were challenged and learned a host of problem solving strategies and ways to think in
tackling problems. In short, grappling with the problems had teachers and students doing
mathematics - for many, perhaps, their first experience at it, rather than simply reading about it.

The way of thinking about problem solving due to Polya was far removed from the “drill and
practice” in mathematics that was so characteristic of school and university textbooks and
classroom teaching during the period from the 1950s into the 1960s. The advent of the "New
Math" during the 1960s was consonant, in some ways, with Polya's ideas. Following the "New
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Math," the Back to Basics movement evolved which is well-known as a setback in U. S.
mathematics education. Indeed this movement was the first large-scale public-initiated intrusion
into the domain of mathematics education. In response, the National Council of Supervisors of
Mathematics (1977) recommended that problem solving be regarded as the main reason for
studying mathematics in the scheols. Shortly thereafter, the National Council of Teachers of
Mathematics (INCTM) issued its widely disseminated booklet An Agenda For Action (1980). Init,
the NCTM recommended that "problem solving be the focus of school mathematics in the 1980s.”
(p. 1) This recommendation was briefly elaborated in terms of curriculum development, the
language of probiem solving, teaching and the classroom environment, problem solving through
applications, and a research agenda to address the nature of problem solving and developing
effective problem solvers. (pp. 2-5) Subsequently, numerous publications appeared which cited,
followed and advocated Polya's approach to problem solving. Both pre- and inservice teacher
education programs were marked by Polya's approach.
But, in response to whether or not problem solving was dealt with in a serious way,
Schoenfeld (1987) commented that
Despite some serious effort, much of the problem-solving movement is largely
superficial. For many, including the developers of mainstream textbook series,
problem solving has been taken to mean adding a few trivial (and often one-step)
word problems to the curriculum... For others, it has meant studying a few e1sy
problem solving techniques in isolation, for example, looking for patterns. (p. 40)
Even the "new math" had little positive impact on raising students’ problem solving prowess
(Schoenfeld, 1987, p. 39). Schoenfeld further looked at Polya's descriptions of problem solving
strategies from the perspective of people inexperienced with them (i.e., non-mathematicians) and
concluded that not enough detail was provided for people to implement them. (p. 42) Further,
Schoenfeld mentioned that
"Research now indicates that a large part of what constitutes competent problem-
solving behavior consists of the ability to ‘monitor and assess' what you're doing as
you work problems and to make the most of the problem-solving resources at your
disposal. It also indicates that students are pretty poor at this, partly because issues
of ‘resource allocation during thinking' are almost never discussed. But there is

evidence that when students get coaching in problem solving that includes attention to

3
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such things - when they .re encouraged to think about issues like "What are you

doing?" "Why are you doing it?" "How will it help you solve the problem?" - their

problem solving performance can improve dramatically.” (p. 44)

Earlier, Kilpatrick (1985) mentioned similar ideas and commented that research shows that the
solution of a complex problem requires (1) a store of organized knowledge about the content
domain, (2) procedures which enable the solver to represent and transform the problem, and (3) a
control system for selecting knowledge and procedures. (p. 28)

Well before mathematics educators raised questions, based on empirical research, that
questioned whether heuristic instruction actually enhances students' problem solving performance.
problem solving had already assumed the main theme of mathematics education in the U. S. in the
1980s. The momentum accelerated and it clearly reflected reliance on Polya's four-stage modei. It

was about this time that we began systematic work with inservice mathematics teachers in Southern

Illinois - with a focus on teaching problem solving.

The Teaching Environment of Teachers in the Southern Illinois Region
Before describing our work with teachers, the reader needs to be aware of the environment in
which our teachers teach. We have surveyed teachers and found the following characteristics:

* Teachers have very heavy classroom teaching assignments each day, usually with only one
class period of 6, 7, or 8 periods) free for preparation.

* Teachers commonly have 34 different class preparations each day.

* Teachers commonly work outside the normal school day grading assignments, developing
tests, scoring tests, evaluating notebooks, etc.

* Teachers commonly have other extracurricular responsibilities after school hours (required
or undertaken to earn extra salary).

* Teachers' lessons are frequently interrupted by "administrative intrusion": public address
announcements, students called out of classes, students returning to classes, students
leaving to go on field trips, etc.

* Teachers frequently have inadequate backgrounds in mathematics, especially for grades K-
8 - their training commonly includes only one or two university mathematics courses and
one "methods" course.

* K-8 teachers commonly express a fear of or anxiety about mathematics and they have
frequently learned what mathematics they know solely through a professor/lecture
approach, far different from the manner in which they are expected to teach.
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¢ Teachers' incorrect perceptions or beliefs about the nature of mathematics are a
consequence of their own inadequate experience with the subject.

« Teachers constantly feel pressure from the public's focus on students' poor achievement
(e.g., National Assessments of Educational Progress (NAEP), international comparisons
of student achievement, and state and local assessments of student learning).

« Teachers are besieged by new curricular regulations and policies handed down by local and
state educational authorities.

« Teachers have to deal with the personal problems of students who carry the burdens of
modern society with them into their classrooms.

« Teachers, in some cases, are given inappropriate teaching assignments, depending on their
schools' circumstances and the needs of their schools - this sometimes leads to a loss of
identity with mathematics, and they may experience a sense of isolation with too few
opportunities to interact professionally with other teachers.

« Teachers experience fatigue - it is a dominant factor in teaching, along with a wearing down
of the spirit.

As a consequence, creativity may be sapped, due to forces teachers perceive to be beyond their
control. Nonetheless, we have found that they persevere and willingly work towards professional
improvement. The point is, however, that there is this reality of both teachers and their schools
which is part of the context in which our work with them must take place. In the final analysis, it
is the shoulders of classroom teachers on which responsibility rests for improving mathematics

teaching in the schools.

Brief Descriptions of Two Early Teacher Enhancement Projects in Mathematics at
SIUC

The teacher enhancement work in which I have been involved began in 1983-84 with 40
teachers - 20 elementary (K-6) and 20 secondary (7-12). This was a small project in which we
attempted to integrate problem solving into mathematics teaching. The project consisted of
Saturday classes held on campus with an emghasis on exposition and on non-routine problem
solving following Poyla's four-stage framework. Computers were also used in problem solving -
programming in Logo (elcmentary) and Pas- al (secondary).

In this work, we also attempted to follow the famous precept, paragraph 243, in the
Cockcroft Report (Cockeroft, 1981) which states that mathematics teaching at all levels should

5
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include opportunities for
* exposition by the teacher,
+ discussion between teacher and pupils and among pupils themselves,

s appropriate practical work,

consolidation and practice of fundamental skills and routines,

« problem solving, inciuding the application of mathematics to everyday situations, and

* investigational work.

Fletcher (1983) comments that the remarkable thing is that no one would say that any of the six
opportunities above does not matter; "but if you remark that most mathematics lessons involve no
more than two of the six headings, there is never any doubt in the mind of the listener as to which
two you mean.” (p.70) Teaching characterized by concentration on exposition and practice at the
expense of other areas he calls excessively didactic. (p. 70)

In our first project, in retrospect, the approach was excessively didactic and thzre was little
evidence that we were successful at integrating problem solving into teachers' classrooms.
Further, though teachers seemed to enjoy the work a great deal, the approach we used provided no
really effective "bridge to the classroom" - there was no real connection made between work in the
project and teachers' classrooms.

In the second project, in 1987-89, we attempted again to integrate problem solving into
classroom teaching. This was a larger project in which sixty teachers participated in a four-week,
on-campus residential institute: 15 from grades K-3, 15 from grades 4-6, 15 from grades 7-9, and
15 from grades 10-12. Again, the emphasis was on non-routine problem solving ala Polya and
applications of mathematics. Computers were also used in problem solving as in the earlier
project.

One important accomplishment of the project was the development of a "Community of
Scholars" among teachers (K-12). In this informal seminar, teachers discussed how to implement

the problem solving approach in their classrooms, NCTM's Curriculum and Evaluation Standards




For School Mathematics (1989/hereafter referred to as the Standards) which was released with
great media attention, and other issues in mathematics education. In addition, teachers were
required to keep an elaborate problem solving Notebook as a resource for implementing project
work in their classrooms. Finally, each teacher was responsible for development of a problem
solving Teaching Unit (TU). The procedure for this was to write the TU, revise it after staff
critique, try it out with students, revise it again, try-out again by another teacher at the same grade
level, and then revise it to final form for use by other teachers and for dissemination. The project
provided follow-up of teachers in their classrooms as soon as the school year began, when the
teachers began implementation of the sumnmer work in their classes. Ten all-day Saturday
"Community of Scholars" meetings on campus during the school year kept teachers in contact on
an on-going basis.

We found that the problem solving Notebook was an extremely valuable resource for
teachers. They had written all problems, solutions, heuristics used, extensions of problems and a
record of discussions of problem solutions in their Notebooks. Similarly, the TU was valuable - it
provided a "sense of ownership" and also a "bridge to the classroom.” The "Community of
Scholars" continued to grow after the summer, with teachers in communication with each other
about mathematics and pedagogy; in effect, a network among teachers emerged which teachers
found extremely valuable - it kept them in contact with each other and helped to remove the sense
of isolation which was prevalent before the project.

The following summer in 1988, a new group of teachers - colleagues of the previous-
summer teachers - was brought to campus for a similar institute. As a result, there were now two
teachers in each school working together on implementation and providing mutual support in
integrating problem solving into the curriculum. Altogether we now had nearly 100 teachers
working together in the network trying to realize the projects' objectives.

Evaluation of the two summer programs (1987 and 1988) showed significant pre- to posttest

improvement in teachers' attitudes towards problem solving and problem solving skills. Teachers
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reported that their students benefitted from the approaches emphasized in the summer programs.
They also developed confidence in their ability to effect change in the curriculum. Through
development of the Notebook and the TUs, there was a strong "sense of ownership" and teachers
took great pride in their work, both in their classrooms and in assuming leadership roles in the
reform movement that was beginning to emerge in the U.S. The "glue to the classroom" provided
by the Notebooks and TUs and the Community of Scholars were clearly important ingredients in
the projects. Evidence indicated that teachers were sensitized against using an excessively didactic
approach in their teaching, about which we were careful in the projects. In this sense, we felt we
made progress towards integrating problem solving into teachers' classrooms. Certainly we had

invested a substantial amount of time, energy and resources and teachers reported positive results

with their students.
};ntse)grating Problem Solving Into Middle School Mathematics Teaching (Grades
There were several developments on the "problem solvi.ig front" during the 1987-89 project.
The first was the release of Everybody Counts (NRC, 1989) and The Curriculum and Evaluation
Standards (NCTM, 1989). The former served as a preface to the latter; together they represented a
strong and compelling case for emphasizing problem solving in school mathematics. Everykody
Counts called for a transformation in both the content of the curriculum and instructional style; it
further called for a focus on seeking solutions, not merely memorization of procedures; exploring
patterns, not memorizing formulas; conjecturing, not simply doing exercises. (p. 84) The
Standards called for similar emphases; in fact, it states four standards that should be emphasized at
all grade levels: mathematics as problem solving, mathematics as communication, mathematics as
reasoning and mathematical connections. The Standards also set forth an assumption about
mathematics learning, namely, what we teach and how students experience it are the primary
factors that shape students' understanding and beliefs regarding what mathematics is about. (p. 5)

The second development was a fairly v * -2 recognition among ™athematics educators,




flowing from research, that students as well as teachers hold the following beliefs about
mathematics (cf., McKnight (1987) and Schoenfeld (1991)):

+ There is one correct answer to any problem.

* There is one correct way to solve any problem.

« Mathematics is passed to students from "above" (the teacher) for memorization.

» Mathematics is a solitary activity.

+ All problems can be solved in 5 minutes or less.

+ Mathematics is easy.

+ School mathematics has little to do with the real world.

« Proof has nothing to do with mathematical discovery or invention.

The third development was the acquaintance we acquired with Japanese research on the
"open-approach” to teaching mathematics. This teaching-evaluating research, largely unknown to
U.S. mathematics educators, focused on development of problems (for use in teaching) that have a
multiplicity of correct answers, a multiplicity of ways to solve a problem with a unique answer, or
a multiplicity of problems formulated by students (problem posing) similar to one they have just
solved (cf. Shimada (1977 - in Japanese), Becker and Shimada (1996), Nohda (1983), Nagasaki
and Hashimoto (1984) and Takeuchi and Sawada (1985-in Japanese)). The aim was to provide
students with experience in solving these "ill-conditioned" problems requiring, of students, no
more than the repertoire of knowledge and skills they have already acquired as part of their
education. Overall, Japanese researchers sought to make this style of teaching an indispensable
part of school mathematics teaching (Becker and Shimada, 1996, p. 14). This teaching approach
has students (Becker and Shimada, 1996)

» mathematizing situations,

» making good use of their knowledge and skills,

* solving the problem(s),

+ seeing other students' discoveries and results,
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» examining and comparing different ideas of different students, and

+ odifying and further developing students' ideas.

Carefully developed problems and lesson plans that were tried-out were an important part of the
teaching-evaluating research. Lesson plans were developed tc "draw out"” students' natural and
different ways of thinking about problems. These different ideas then provided the substance for
discussion, with the teacher as a facilitator. The teacher then plavs a crucial role in summarizing
the lesson. Further, Japanese researchers developed an assessment-of-learning approach: that is
interesting, useful and very different from traditional approaches to assessing student learning in
the U.S.

Since the middle school years are the time when so many students are lost from mathematics
ir the U.S. (half of the students end their study of mathematics each year from grade 8 onwards),
we decided to focus our next project at this level. Further, since the Japanese "open-approach” fit
so compatibly with NCTM's first four standards, we decided to incorporate this approach, as a
major compoient, into our ieacher enhancement work with middle school teachers.

The fourth develcpment was new curricular materials disseminated from Michigan State
University (Middle School Mathematics Project/MGMP). The philosophy on which the MGMP
was based mirrored recent findings in cognitive science, summarized by Resnick (1986) as
follows:

First, learners construct understanding. They do not mirror what they are told or

what they read. Learners iook for meaning and will try to find regularity and order in

the events of the world, even in the absence of compiete inforn.>tion. This means

that naive theories will always be constructed as part of the learner process.

Second, to understand something is to know relationships. Human knowledge is

stored in clusters and organized into schemata that people use both to interpret

familiar situations and to reason about new ones. Bits of information isolated from

these structures are forgotten or become inaccessible to memory.

Third, all learning depends on prior knowledge. Learners try to link new information

to what they already know in order to interpret the new material in terms of

established schemata. This is why students interpret science demonstrations in terms

of their naive theories and why they hold onto their naive theories so long. The

scientific theories that children are being taught in schocl often cannot compete as

reference points for new learning because they are presented quickly and abstractly
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and so remain unorganized and unconnected to past experience. (quoted from
Fitzgerald, 1987, p. 13)

The MGMP materials consisted of five booklets titled Mouse and Elephant, Spatial Visualization,
Factors and Multiples, Probability, and Similarity. These materials help students to develop a
deep, lasting understanding of concepts and thinking strategies. They concentrate on a cluster of
important ideas and their inter-relationships. Concrete models assist students in moving from a
concrete stage to more abstract reasoning; i.e., students abstract the concepts themselves from their
concrete experiences (emphasis added/Fitzgerald, 1987, pp. 16-17). Overall, the teaching strategy
consists of three phases: first: introduce new concepts; second: exploration (students working
individually or in small groups); third: summarizing (the teacher “pulls together" the ideas of
students, facilitates discussion, and deepens understanding). Our view was that the MGMP
materials complemented the "open-approach” to teaching problem solving (mathematics), fit nicely
with the approach, and was also highly consistent with the recommendations in the Standards.

Finally, probability and statistics was recommended as a new and key content strand for all
grade levels in the Standards. New materials developed at the Technical Education Research
Center (TERC) become available in 1989-92 for the elementary grades, including early middle
school (Used Number Project/lUNP). In addition to dealing with important statistical concepts, we
felt the pedagogy, here too, fit nicely with recommendations in the Standards and the "open-
approach”. The materials engage students in study of statistics (using real data), provide
opportunities to model real mathematical behaviors like statisticians, and have them participating in
(Russell and Corwin, 1989):

* cooperative learning,

* theory building,

» discussing and defining terms and procedures,

» working with messy data, and

* dealing with uncertainty. (p. 1)

We decided that we would incorporate the Japanese "open-approach" to teaching problem




solving and the MGMP and UNP materials as major components in the instructional program of
our project. They all represented approaches to teaching mathematics that are far from being
excessively didactic; in fact, we felt that all would make a significant contribution to development
of mathematical thinking abilities in teachers and their students.

We also decided that in the "open-approach" problem solving seminar, the faculty teachers
would model the teaching in the same way that we wanted teachers to teach their students. In the
two seminars for the MGMP and UNP materials, the teaching would similarly follow the teaching
model fairly closely. But, in addition, we decided it would be important for : (i) teachers to
observe the project staff teaching middle school students the same way they were being taught,
using the same problems and materials, and (ii) have teachers develop lesson plans which they
would use in teaching the middle school students.

So, we recruited three groups of middle school students (grades 6,7,8) and organized
Demonstration Teaching. As an aside, it is noted that for U.S. teachers, teaching students with
other teachers observing is not common; in fact, it is daunting and not easily accepted. However,
we were able to work this out and, in the end, it was highly successful. We began a kind of
"tradition," in this regard, and teachers became quite comfortable with it. The final component in
the project was the "Community of Scholars" seminar. The seminar was organized in the same
manner as in the 1987-89 project which worked so successfully.

With these five components, we began the new project with thirty middle school teachers in
the summer of 1990. There was a four-week, intensive, residential institute on campus in the
summer of 1990, followed by implementation of objectives in teachers' classrooms and
continuing "Community of Scholars" seminars during the 1990-91 school year. Then, these
teachers returned for a second two-week residential institute on campus in the summer of 1991.
Here the instructional program included a continuation of the "open-approach” seminar and two
new seminars - one with a focus on geometry and the other on problem solving using Logo. The

same program was repeated for a new group of 30 teachers in 1991-92. We note here that one of
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the Japanese originators of the “"open-approach,” Professor Yoshihiko Hashimoto, came to SIUC
to teach the second-summer seminar in both 1991 and 1992. This helped us to remain faithful to
the "op<en-approach" and Professor Hashimoto made a very important contribution to our work.

Another comment needs to be added here. Since this was a residential institute, the teachers
lived in a dormitory for four weeks. The dormitory had a large "commons area” for "Community
of Scholars" seminar meetings and also a large workroom with blackboards, tables and chairs.
There was room for computers (programming and word processing) and reference materials.
Classrooms where seminars were held were located nearby as were the eating and recreation
facilities. Thus, we had teachers living, eating and working together for four weeks. The facilities
were necessary and excellent for the intensive work we had teachers doing.

Each of the 60 teachers developed an elaborate "open-approach" problem solving and
probability and statistics lesson plan during the summer program. These were duplicated so each
teacher had full sets of 30 problem solving and 30 probability and statistics lesson plans at the end
of the summer, for use in implementing project work in their classrooms. They also used the
MGMP materials in their implementation. Pairs of teachers developed a Plan for Implementing
materials from the project near the end of the summer project.

In each year, the teachers' implementation was monitored fairy closely. Whole-day visits
were made to their classrooms, during some of which the project director also performed some
demonstration teaching. The latter proved to be quite novel and was very successful: a professor
teaching school students is not common in the U.S. Visits were also scheduled with teachers'
administrators, and each year in December and May, teachers submitted detailed reports of what
lesson plans had been used and how they worked. At the end of each of the two years, a one-hour
interview was scheduled with each teacher in her/his school. Here we assessed the extent to which
teachers changed their teaching behaviors and how their students responded. During discussions
with teachers' administrators and teaching colleagues, we assessed their reactions and those of

parents to changes in our teachers' classrooms. Both administrators and parents showed nearly
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uniform acceptance, and frequently, outright enthusiasm for the changes underway.

The "Open-Approach" to Teaching Mathematics

Since the Japanese "open-approach" to teaching was such a prominent characteristic of the
project, perhaps a little more elaboration is in order. The "open-approach” research was begun in
1971 (Shixhada (1977/in Japanese) and Becker and Shimada (1996)) and later expanded (see
Takepchi and Sawada, 1985). Other researchers included Y. Sugiyama, Y. Hashimoto. N.
Nohda, H. Kimura and others, including many classroom teachers.

The "open-approach” engages students in mathematical inquiry through lesson plans
developed around problems, as mentioned earlier (i.e., many different correct answers/responses
in problem situations, many different ways to solve a problem which has a unique answer, and
students formulating problems like one they have just solved. The figure below depicts what the
author refers to as "Openness in Mathematics Education" reflecting the "open-approach” as we

handled it in the seminar during the two summers.

1. ONEPROBLEM . .. .......... ... ... ..o .. ONE SOLUTION (ANSWER)

WAYS

(Process is open)
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2. ONE PROBLEM (OPEN ENDED) ... . .. SEVERAL OR MANY SOLUTIONS (ANSWERS)

WAYS

(End products are open)

A. Problems in which students find rules, relations, and patterns
B. Problems in which students find ways to numerically measure

C. Problems in which students find ways to classify

3. ONEPROBLEM . . . ... ... SEVERAL PROBLEMS
("From problem toproblem . . .. ......... ... .. ...... the developmental approach”)

: - - e -o - :.\‘
15t | T .
stage |
| 4 WAYS
Anzlogy '
Generalization
(Ways to develop are open)

Openness in Mathematics Education
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Examples ~f two problems used in the seminars are as follows:

Marble Problem (Shimada, 1977)

A B C

Three students A, B, C throw five marbles that come to rest as in the figures above. In this game.
the student with the smatlest "scatter” of marbles is the winner. To determine the winner, we will
need to have some numerical way of measuring the "scatter” of the marbles.

(a) Think of this situation from various points of view and write down different ways of
measuring the degree of "scattering".

(b) Compare the different ways of measuring. Do you think there is a "best" one? If so, what is
it, and why?

Toothpick Problem (Hashimoto, 1987)

Squares are made by using toothpicks as shown below. When the number of squares is 8, how
many toothpicks are used? Find your answer as in as many different ways as you can.

Later, after discussion of the problem and different ways for finding the answer:

Now, make up and write down as many problems as you can that are related to this problem.

The problems are of crucial importance in this teaching method. We used many problems from
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the Japanese research and we also formulated, tried out and developed problems of our own -
including changing some from the textbooks used by teachers to "open-approach” types.

There is an obvious relationship between this approach to teaching and certain high priority
goals of our current reform movement (i.e., the Standards). During the project, teachers also had a
copy of the "Working Draft" of NCTM's Professional Standards for Teaching Mathematics
(1991). The "open-approach," as we interpreted and used it, was highly consistent with the
recommendations in the new Professional Standards.

Lesson plans are of crucial importance in using this approach. Accordingly, we adopted the
following organization of lesson plans in the problem solving serninar (assume a 50-minute class
period; cf. Becker et al. (1990) and Nagasaki and Becker (1993)):

I. Introduce the problem ... S minutes
II. Understanding the problem...........c..ccciiiiiins S minutes

III. Problem solving by students, working
individually, in pairs or in small groups.........ccccceeernes 25 minutes

(Note: Here we draw on the students’
natural ways of thinking about the problems.)

IV. Comparing and discussing (students
put their solutions/ways of thinking on the
blackboard for everyone to S€€).......ccccoiriieniriiniinnns 10 minutes

V. Summary by teacher..........coociiiiiinn S minutes
Notes: (1) Of course, some problems we used required more than one period (e.g., 2-3 periods).

(2) Sometimes, during the last few minutes, we asked students to write down what they
learned in the lesson.

(3) Homework may involve additional time to solve the problem, reflect on the problem.
extend the problem, or solve other (perhaps related) problems.

(4) The times above, of course, are not absolute and may vary according to the
circumstances of the lesson and teaching conditions. However, we developed some
lessons designed to be carried out in the prescribed time period - our reason was to
help teachers to become more conscious of managing the lesson carefully and using
class time effectively and efficiently (which many teachers reported that they did not
do regularly in their classes; in fact, many reported, after their experience with this
approach, that much instructional time had previously been wasted).

17
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Assessment of Learning
Japanese researchers developed an approach to assessment which we discussed in our "open-
approach” problem solving seminar (c.f., Shimada, 1977/in Japanese and Becker and Shimada,
1996). Before describing it, a couple preliminary comments should be made. First, it is important
in using this approach that teachers cooperate and collaborate in developing lesson plans. In
particular, we found it important for them to solve problems together in order to generate as many
different perspectives for approaching the problem(s) as possible; that is, generate many different
correct answers, many different ways to solve a problem with a unique answer, or formulate many
different problems. This helps the teachers to become quite informed about the problem situation
(urderstand it), to develop teaching confidence and to be prepared to handle students’ questions.
Secondly, after teachers develop, say, many different correct ways to solve a problem, they then
categorize the different ways according to the different mathematical ideas present in all the ways.
This categorization plays a key role in doing assessment as is seen later.
There are four components or parts to the assessment, as follows (Shimada, 1977 - in
Japanese and Becker and Shimada, 1996):
1. Fluency
This is concerned with the number of different correct answers, diff rent solution
approaches, or problems formulated by an individual student (or group of students). It is
assessed quantitatively by simply counting.
2. Flexibility
This is concerned with the mathematical quality of a student's (or group's) responses -
how many mathematical ideas are discovered by the student (or group). It is assessed
qualitatively mostly; however, it can also be assessed quantitatively by assigning points

to a student's (or group's) responses.

(o8

. Originality

If a student (or group) develops a unique or original idea not found by other students (or
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groups) or makes as especially insightful observation, originality should be given a very
high assessment (i.e., responses of very high mathematical quality should be
acknowledged and recorded as a very high assessment).

4. Elegance

This is concerned with the degree of elegance in a student's (or group's) expression of
their thinking in mathematical notation. This may be difficult to assess objectively;
nevertheless, it has potential as part of assessment.

Information or data for use in assessment can be collected, in our experience, in the

following ways:

« Analyze student's' (or groups') worksheets. For example, after students have the problem
presented to them and begin individual problem solving, they should write down their
work (thinking) on their worksheet. These are then collected and later analyzed according
to the approach outlined above. If students then form groups, a "measure” has been made
of individual work and, in the group, they naturally share their different ways of solving
the problem with other students.

» While individual students (or groups) are working, the teacher moves among them
observing and listening to what they are writing and/or saying. This is not casual
monitoring to keep students' behavior in check; rather, this is purposeful scanning of
students’ work that can be remembered and/or recorded by check marks on an assessment
form. During this time, the teacher also selects particular students (or a representative of a
group) to put particular problem solving processes on the blackboard, for discussion later.

* During the comparing and discussing part of the lesson, the teacher mentally notes
observations and contributions of students for recording later.

Thus, there is opportunity for the teacher to collect important information for assessment

purposes in at least these different ways. Further, instruction can be adjusted based on

observations during teacher-students or students-students discussion. So, the assessmerit
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approach also serves as an important function to improve teaching during the lesson as well as to
improve the lesson plan itself. Thus, it can be seen that this approach to assessment can contribute

or lead to teacher improvement as well as to curriculum improvement.

Evaluation/Documentation of the 1990-1992 Project
The results of the project evaluation/documentation are summarized below (Becker, 1993):

A. Teachers' Feelings about the Project: A tabulation of teachers' feelings about the project

in both 1990-91 and 1991-92 showed very high satisfaction on each of 16 items on a
questionnaire, including a high general, overall evaluation of the project.

B. Reports of External Evaluators: Two professors external to SIUC in each of 1990 and
1991 visited the project, observed all seminars and many demonstration lessons,
interviewed all staff members, and interviewed teachers individually or in small groups.
Their oral and written reports showed clearly that teachers improved their knowledge of
problem solving; skills in solving problems; attitudes towards mathematics, problem
solving, and technology; identified with the spirit and letter of the pedagogy emphasized
in the institutes; and that the objectives of the project were being achieved. They reported
that this was a direct result of participation in the project. They also provided very useful
suggestions/recommendatior:s for follow-up during the academic year - their reports were
very hard-hitting constructive critiques of project activities.

C. Pre and Posttesting and other Documentation [teachers used pseudonames on all
measures]: Year 1 (1990/summer and 1990-91):(1) Results showed statistically
significant change from pre-to-post on a 61-item Likert measure and subscales (Attitudes
Towards Mathematics Problem Solving and Technology), with high Cronbach alpha's
for the whole measure and each subscale; (2) results showed statistically significant

change from pre-to-post on a Beliefs About Mathematics measure, with high Cronbach

alpha's for each part; (3) results showed statistically significant change from pre-to-post

on a MGMP Achievement measur with a high Cronbach alpha; (4) results showed a
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statistically significant change from pre-to-post on a Problem Solving Test and
subscales, with Cronbach alpha's for the whole measure and each part; (5) results of

Teacher Ouestionnaires, which were administered at the end of Summer 1990 and in

Spring 1991 (covering all the components of the program), and Final Interviews were '
favorable and clearly indicated that a metamorph.sis among participants had occurred.
Further, results indicated that participants embraced the recommendations given in

NCTM's two Standards. Since no funds were available and time was severely scarce for

planning, no comparison group was used in the year 1 evaluation.

Year 2 (1991/summer and 1991-92): All the pre-post measures used in year 1 were used e *
again in summer 1991, with only minor changes made. However, this time a comparison
group of 25 middle school mathematics teachers was recruited and administered the pre-
and post measures with exactly the same time between testing sessions. The ANCOVA
analyses indicated that; (1) there was a statistically significant difference, favoring the
project group, on the Problem Solving Test and subscales, with high Cronbach alphas for
each; (2) there was a statistically significant difference, favoring the project greup, on the
whole Likert measure and subscales (Attitudes Towards Mathematics, Problemn Solving,
and Technology), with high Cronbach alphas for the whole measure and each subscale;
(3) there was a statistically significant difference, favoring the project group, on the Belief
About Mathematics measure, with high Cronbach alphas for each part; (4) there was a

statistically significant difference, favoring the project group, on the MGMP Achievement

measure with high Cronbach alphas for both groups; (5) results of both the Teacher

Questionnaire and Final Interviews with téachers in their schools were again very

favorable and, like year 1, indicated that a metamorphosis among participants had

occurred. These results confirm that the summer projects had a significant impact on -0
teachers and, further, the validity of the findings were enhanced by inclusion of the |

comparison group in the evaluation in year 2.
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D. Follow-up of Teachers in Fall 1990 and Fel 1991. A, mentioned earlier, all 60 teachers

3

were visited in their classrooms following their participation in the summer institute.
During these visits, from 1 to 4 classes were observed, the project director sometimes
taught demenstration lessons, teachers were interviewed and discussions were held with
acministrators. It is clear that participants were comnitted to implementing the project
materials in their classrooms and were enthusiastic about it. Moreover, they were
discussing their work with other teachers in their schools, were conducting inservice
institutes for other teachers and had acquired high profiles as teaching professionals
throughout the region - they conducted workshops and gave talks at county, state and
national meetiags of teachers, many of whom had not done this previously.

Summary: A variety of measures and other forms of documentation; were used to collect
data on several dimensicns of improving the middle school teaching of mathematics with
these teachers. There were very clear indications from the results reported above that
weachers benefited from project activities. Their knowledge, skills, attitudes, beliefs and
classroom teaching changed in a positive direction. The results of the evaluation and
documentation have both complemented and supported staff observations that the work
had an impact on participating teachers, in a very significant and dramatic way. In fact,
the analyses of 60- minute interviews held with each participant in their schools at the end
of their academic year confirmed the findings reported above. At the same time, there are
some programs aspects that need to be considered in future wovk: (1) there is a need to
more carefully coordinate assignments given in the summer seminars - they need to be
more evenly spread ove: the fou.r-week institutes; and, it would be useful to make week
1, in comparison to weeks 2-4, a little less stressful in terms of work required of
teachers; (2) in demonstration teaching, there is a need to provide more opportunity for
participants following their teaching, to "debrief" with peers who observed the lesson; (3)

teachers reported that the four-week institutes pressed them "to the limit," a fact about
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which we need to be mindful in the future; (4) for one of the two geomelry courses, SOme
participants reported that too much material was attempted by the instructor - less material
with more depth was preferred; (5) in one of the two computer courses, some participants
indicated that a closer connection to their classroom was needed.

FINAL NOTE: The formal involvement of teachers in the project concluded when they
were joined by 80 other K-12 teachers and 35 administrators from throughout the
Southern Ilinois region for a two-day Working Conference to Plan Future Work to
Improve Mathematics Education in the Southern IHlinois Region. The Conference

provided a clear indication of Needs of K-12 teachers, Goals for mathematics education,

and a Plan of Action for the near future. The Proceedings of the conference has been
widely disseminated throughout the Southern Lllinois region. The Conference and
Proceedings have contributed to formation of the Southern Illinois Mathematics, Science
and Technology Network which will be instrumental in carrying our future activities

throughout the region.

Closing Comments

We feel that we have made some progress in our projects by moving instruction: from
teacher-centered to student-centered; from the teacher as an imparter of knowledge to the teacher as
a facilitator of learning; from excessively didactic instruction to teaching which is much less so; and
moving instruction to a meaningful context (in the last project especially) to which teachers can
relate. We feel that teachers were at least beginning to understand the nature of what we are trying
to accomplish, judging from their reactions in the projects and their reports of what subsequently
happens in their classrooms. We feel that we have meaningfully been able to integrate problem
solving in the classrooms of the teachers who participated in our projects and overall, we feel we
"are on the right track.”

The "glue-to-the-classroom” is essential; by this we mean that teachers need to experience

learning the new teaching approaches themselves and they need to have curricular materials which
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they have studied and learned themselves in their hands, along with the pedagogy, in order to
implement them in their classrooms and achieve what we hope will be change with a lasting effect.
Modeling the teaching in the "open-approach,” MGMP and UNP seminars was crucially
important, we feel. Further, having teachers observe project staff (which included master
classroom teachers) teach the materials to students helped to remove some of their skepticism; and,
having teachers teach students using lesson plans they (themselves) developed also provided some
of the final "glue." Cheosing teachers in pairs from schools/school districts provided needed
mutual support as they changed their teaching approaches. Also, teachers took great pride and had
a "sense of ownership" in using materials they developed or learned to master in the project for use
in implementing project objectives. Overall, we believe teachers were able to see utility in the
project activities for their own classrooms. Thus, there is little room, generalizing from our
sxperience, for lecturing. Being excessively didactic, as Fletcher mentions, is counterproductive -
certainly this is one of the lessons learned in our work up to this time. Acquainting ourselves as
project leaders with the reality of teachers' classrooms and schools, and then doing our work
cognizant of that reality, helps to provide the "glue" in a very important way. The network of
tcachers who now professionally interact with each other on a regular basis and who continue to
collaborate in improving their teaching is helping to further develop a base or critical mass that has
potential for furthering our project objectives.

The crucial components in the "model” we have now developed, after a decade of work,
seem clearly to be: (1) including instructional components of important mathematical conzent (e.g.,
the MGMP and UNP materials) and problem solving; (2) using the "open-approach” teaching
methodology; (o) medeling desired teaching behavior when teaching teachers; (4) demonstrating
that the fiew content and teaching approaches work with real students; (5) having teachers teach
demonstration lessons; and (6) implementing an approach to assessment that is closely linked with

and which reflects the goals of both the teaching approach and instructional components. To be
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sure, we need to further develop the "model" and improve it and that is on our agenda of "next
steps”.

Our plan is to next apply this model in a school district with all teachers who teach
mathematics in grade X-8, and to further develop it in that context. Then we expect to apply the
“enhanced model" in contiguously located school districts while further improving it. The area in
which we hope to do this during 1994-97 is the fourteen school districts in the Metro-East area of
Tilinois across the Mississippi River from St. Louis.

Now let us return to Schoenfeld's (1987) article. The article provides an interesting and
authoritative historical analyses of problem solving and Polya's works. He mentions that “there
are both scientific and social components to issues in mathematics education” (p. 45). Further, at
the scientific level some good work has been done to begin laying a foundation for a science of
education. (p. 45) But so much remains to be done that there is not, at this time, anything
substantial enough to show us, really, how we should be teaching problem solving from a
scientific point of view.

On the social level, however, the issues are different and this is a crucial time for problem
solving (Schoenfeld, 1987, p. 45). If we cannot begin to show some positive results from
curricular work and change in the direction of mathematical thinking, the pendulum may swing
again away from problem solving; but it doesn't have to be this way. If teachers, mathematics
educators, cognitive scientists and mathematicians can work together to create curricula that are
mathematically sound, psychologically reasonable and workable in the classroom, and which deal
with both basic skills and development of mathematical thinking abilities, then we can avoid a
pendulum swing back to basics again. (p. 46) While we cannot claim to have accomplished
anything on such a grand scale in our work so far, at least we feel we have "made a dent” in
working at the problem, perhaps with some potential for better and more significant change in the

future.
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Endnote

The work reported here was funded by the National Science Foundation (NSF), the Illinois
State Board of Higher Education (IBHE), the Illinois State Board of Education (ISBE), and
Southern Illinois University at Carbondale (SIUC). Opinions, findings, and conclusions or
recommendations are those of the author and do not necessarily reflect the views of the supporting
or sponsoring agencies.
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MATHEMATICS EDUCATION IN JAPAN
- Some of the Findings from the Results of the IEA Study -

Toshio Sawada

National Institute for Educational Research

1. Introduction

In 1980-81, the Second International Mathematics Study (SIMS) was conducted in 20
countries including Japan. This study was carried out by the International Association for the
Evaluation of Educational Achievement (IEA) in cooperation with each of the participating

countries/systems. These national reports have already been published by National Institute for
educational Research of Japan (NIER) in 1981(1), 1982(2), 1983(3) and 1991(4) in Japanese. The

International reports on SIMS were issued in 1988(5) and 1989(6) .
The first major [EA study was concerned with mathematics achievement. The data from this

survey were collected in 1964 in 12 countries, including Japan, and the main report was published

in 1967(7). This study will be called the First International Mathematics Study (FIMS). It made
public for the first time, throughout the world, the high level of achievement in mathematics of
Japanese students.

The purpose of this paper is to discuss the level of mathematics achievement and the

tendencies of Japanese students and mathematics education in Japan, based on the results of SIMS.

2. Curriculum and Mathematics Achievement
(1) Curriculum Analysis

The Second International Mathematics Study was carried out for 13-years-old students
(Population A) and science-mathematics students directly before entrance into college or university
study (Population B).

In Japan, we regarded students in the first grade of lower secondary school (7th grade) as

Population A and students in the third grade of upper secondary school (12th grade) taking more
29
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than five mathematics lessons per week as Population B, and in each case, we studied about 8,000
students in 200 schools in 1980-81.

In this study we intended not to simply compare achievement among participating
countries/systems, but to study each nation's mathematics curriculum and teaching methods and
then study the relation between them and students’ attainments.

When we compare the results of Japan with those of other countries, we must consider **
differences of curriculum between them. One of the indexes we can use to see the learning
condition is "Opportunity to Learn." When students have many learning opportunities in

mathematics, they will be able to get better achievement.

Table 1 Opportunity to Learn and Mathematics Achievement for Pop. A

(Lower Secondary School) Japan International
Domain (No. items) OTL p-value OTL p-value
Arithmetic (46) 85% 60% (1)a 80% 51%
Algebra 30) 83 60 (1) 73 43
Geometry (39) 51 58 (1) 52 41
Statistics (18) 76 71 (D) 57 55
Measurement 24) 95 69 (1) 80 51
Total (157) 77 62 (1) 69 47

Note: OTL: "Opportunity to Learn" rated by teachers
p-value: Average percentage of students correct responses by each area
a: Ranking among the 20 countries/systems
Tables 1 and 2 indicate percentages of teacher opportunity to learn and student achievement
for lower and upper secondary students. Here "Opportunity to Learn" (OTL) means ratings by
teachers of whether the content needed to respond to each item on the mathematics test had been
taught that year, in prior years, or not at all, to their students.
According to the international means in Table 1, these are high means of opportunity to learn

in arithmetic, algebra and measurement, but not in geometry, probability and statistics. And on

algebra, the more opportunity the country gives to students, the better the achievement of the
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students, but in geometry no relation is seen between opportunity to learn and achievement, as
reported. It seems that each country/system is confused about the content and teaching method of
geometry. In Japan, except for geometry, there is high opportunity to learn in all the domains, and

in each domain the Japanese students got the best scores in 20 countries/systems.

Table 2 Opportunity to Learn and Mathematics Achievement for Pop. B

(Upper Secondary School) Japan International
Domain (No. items) OTL p-value OTL p-value
Set, Function @) 94% 78% (2)a 70% 62%
Number System (17 80 68 (2) 76 50
Algebra (26) 100 78 (2) 87 57
Geometry (26) 90 60 (2) 68 42
Analysis (46) 92 66 (2) 76 44
Probability (7) 83 70 (2) 59 50
Total (129) 91 68 (2) 75 48

Note: OTL: "Opportunity to Learn" rated by teachers
p-value: Average percentage of students correct responses by each area
a: Ranking among the 15 countries/systems
In the upper secondary school, there also is not so much opportunity to learn geometry,
probability and statistics among the participating countries/systems. About the Japanese
mathematics curriculum, it can be said that it is a relatively advanced and extensive curriculum
compared to others, because it's percent of opportunity to learn is over 80% in all domains.
These are comparisons based on the "Implemented Curriculum"” (i.e., the actual learning
activity in each school). Against it we can take another way to compare using the "Intended
Curriculum" in the Course of Study and textbooks, etc.
The IEA study applied the rates of opportunity to learn to the former, and the rates of
appropriateness of items for the latter, which was determined in advance by what percentage of
specialists in each country/system judged that each item was effective according to its curriculum.

In a comparison on the "Intended Curriculum," we find that most parts of the mathematics

curriculum of Japan is introduced one half or one year earlier in the elementary and lower
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secondary schools than in other developed countries like the U.S., England and France.

In most countries each curriculum will be reviewed in the next school year, but in Japan few
schools introduce the spiral method, and in general, their curriculum is to teach intensively and
efficiently withia a school year. So they can introduce various parts of the curriculum earlier than
other countries.

(2) Students’ Achievement in Mathematics

We can consider each nation's educational level by considering the "Attained Curriculum" that
is indicated by students' achievement and changes in their attitudes toward mathematics.

The international report showed the achievement of each country by the content domains
because the situations of opportunity to learn are different from each other, but I tried to arrange

them by making two bar graphs (Figure 1 & Figure 2), ignoring the degree of opportunity to learn.
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The results of mathematics achjévement for 13-year olds (lower secondary school students) is
shown in Figure 1. The result for Japanese students is superior to the others. And Figure 2
shows that Japanese students scored in second place, following Hong-Kong.

For the upper secondary school students, for Population B, it is a mistake to simply compare
their scores. The reason is that there is a problem of the differences of curriculum and opportunity
to learn, and moreover, we should be careful about the percentage of staying (i.e., the retentivity in
Population B mathematics) which shows what percentage of all the same age cohort are in this
population.

In Japan about 12% belong to this group. The percentage of retentivity is a high 50% in
Hungary and 30% in Canada (British Columbia), and a low 6% in England, Hong-Kong and
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Israel. Excepting these countries, retentivity is in the teens percentage. It can be said that the
relative inferiority of Hungary's achievement, of upper secondary students to lower secondary
students, is caused by this percentage of retentivity.

Next, I would like to show a comparison of each country's achievement by some common
problems.
Example I. 2/5+3/8=

A. 5/13 B. 5/40 C. 6/40 D. 16/15 *E. 31/40
Example 2. A runner ran 3,000 meters in exactly 8 minutes. What was his average speed in

meters per second?

A. 3.5 *B. 6.25 C. 160 D. 375 E. 3625
Example 3.

lst row 1

2nd row 1 - 1

3rd row I - 1 + 1

4th row I -1+ 1 - 1

Sth row 1 -1+ 1 - 1 4+ 1

What is the sum of the 50th row?
*A. O B. 1 C. 2 D. 25 E. 30

Lxample 4. For the equation x2-5x+6=90
A. There is no solution B. There is exactly one solution
*C. There are exactly two solutions D. There are exactly three solutions
E. There are more than three solutions
Example 5. P is a polynomial in x of degree m, and Q is a polynomial in x of degree n.

with n < m. The degree of the polynomial (P + Q)(P - Q) is
*A, 2m B. m? C. mn D. n E. m2-ni
Example 6. A radio-active element decomposes according to the formula
y = _\'Oe-kt
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where y is the mass of the element remaining after ¢ days and y, is the value of y for

= 0. Find the value of the constant k for an element whose half-life (i.e., time to
decompose half of the material) is 4 days.
*A. (1/4)log 2 B. log(1/2) C. log,e D. (log,e)1/4 E. 2e4

Examples 1, 2 and 3 are for lower secondary school students and examples 4, 5 and 6 are for
upper secondary school students. Table 3 shows the results of students’ achievement in some
countries.

Example 1 is a problem of fractional computation. This item had very high Oppertunity to
Learn ratings in most countries. However, the mean percent correct was only 58, with a range
from 89 percent correct in Japan to 25 percent correct in Sweden. For this kind of problem,
computation, Japanese students got very good scores, but for a word problem that requires the

power of thought like example 2, the scores were nc * as good as expected.

Table 3  Achievement in the countries/systems by items

Country Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex .6
Japan 89%(l)a  37%(5) 41%(6) 97%(2) 34%(3) 56%(4)
Belgium(FL) 69 34 45 89 27 28
Belgium(FR) 68 34 40 93 19 23
Canada(BC) 68 25 37 88 14 24
Canada(ON) 62 23 39 87 13 30
England 42 29 39 94 17 64
Finland 41 28 34 98 39 54
France 72 34 47 - - -
Hong Kong 69 43 45 94 52 70
Hungary 66 46 37 84 7 13
35
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Israel 65 29 48 95 8 11

Luxembourg 63 30 32 - - -
Netherlands 64 42 49 - - -
New Zealand 38 22 40 87 16 47
Nigeria 63 24 20 - - -
Scotland 55 25 37 81 4 16
Swaziland 44 17 13 - - -
Sweden 25 29 30 90 17 73
Thailand 45 35 29 78 10 32
USA 57 20 34 74 8 28

Note: -: did not participated in Pop. B
a: ranking among the 20 or 15 rountries/systems

Example 3 received very low Opportunity to Learn ratings in most countries. On examples 4
and 6, each country got a high percentage of right answers, but for an applied question like
example 5, Hong-Kong and Finland got better scores than Japanese students.
(3) School's Achievement in Mathematics

We can consider each school/class's educational level by comparison of the "Attained
Curriculum" indicated by each school/class mean of students' achievement. This study was carried
out in both populations with samples of approximately 200 schools/classes of 8,000 students each.
The school sample was stratified by kind of school, size of school and population of the town, etc.
for the sampled school. And then, one class was selected at random from within the selected
schools.

Tahle 4 shows the distributions of school/class means for the above problems.




Table 4 Distributions of School/Class Mean

Item p «d 0- 10- 20- 30- 40- 50- 60- 70- 80- 90- 100

Ex.1 8. 72 0 0 0 0 0 1 2 17 87 97 8

Ex.2 38. 174 11 18 31 49 46 28 16 8 1 0 1
Ex.3 41. 179 5 10 32 55 33 40 19 5 7 3 0
Ex 4 97. 6.1 O 0 0 0 0 1 0 2 15 23 149
Ex.5 36. 229 28 20 29 26 28 26 11 16 6 0 0
Ex.6 56. 258 6 10 18 17 21 27 21 26 19 14 11

Example 1 is a problem of fractional computation. This item had been previously taught in
school. The school mean correct percentage was 89%, with a small range from 50% to 100%.
For that kind of problem, computation, like example 4, the Japanese students got very good
scores; but for a word problem that requires mathematical thinking like examples 2, 3, 5 and 6, and
which had already been taught the previous school year, the scores were not as good as expected.
School/classes distributions had very wide ranges. I think that teachers' methods and teachers’

beliefs have affected students' achievement.

3. Change in Mathematics Achievement
(1) Comparisons betwee AS and

In the 20 years after the 1960s, in the decade that the First International Mathematics Study
(FIMS) had been performed, great reform of mathematics education could be seen in many
countries. In the first half of it, a modernization movement of mathematics education (the New
Math Movement) was developed in each country and its revision was done in the second half. It
was very interesting for me to study its results.

In the international report in 1989(6), the problems caused by a rapid rise of percentage of

students entering upper secondary schools, the changes of mathematics curriculum in each country
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and the comparisons of results in each content area are stated in detail.

Table 5 shows change in achievement among the countries on FIMS/SIMS.

Table 5 Change in Achievement on FIMS/SIMS

i Population A Population B
Country FIMS SIMS d FIMS SIMS d
Japan 64% 64% 0% 64% 76% 12%
Belgium 56 50 -6 54 50 -4
England 52 44 -8 70 65 -5
Finland 43 45 2 52 63 11
France 50 55 5 - - -
Israei 56 46 -10 55 48 -7
Netherlands 48 54 6 - - -
Scotland 50 46 -4 55 42 -13
Sweden 37 37 0 54 58 4
USA 47 45 -2 32 38 6
Mean 50 49 -1 54 55 1

Note: - : did not participate in Pop. B
d: SIMS - FIMS

The results show that lower secondary school students began to get better results in the

algebra domain, but worse in arithmetic, and though more students entered upper secondary school

than that of the last study, the number of Population B students who took mathematics was not so

large; and the results of fundamental understanding and techinique were improved, but those of

application were not good.

Here I want to consider the alteration of results of the 35 anchor items for lower secondary

students and the 18 anchor items for upper secondary students for the countries who participated in




both FIMS and SIMS.

Comparing the international average (mean) of FIMS and SIMS, there is no difference
between them, but there is some difference in the results in each country. The countries whose
results become better are France and the Netherlands for lower secondary students, and for upper
secondary students, Finland, Sweden, USA and Japan. And the countries whose results became
worse are Belgium, England, Israel and Scotland for both populations.

(2) Growth of Score between FIMS and SIMS for Pop. A in Japan

In Japan, the achievement of upper secondary students in SIMS was improved in all areas
compared to FIMS. However, lower secondary students' achievement was almost the same.

Table 6 shows a comparison of the last study and this study of Japanese students with respect

to the anchor items divided into non-verbal and verbal problems.

Table 6 Achievement in FIMS / SIMS : Pop. A

Area (No. items) FIMS SIMS Change
Overall 35 64% 64% 0%
Non-verbal 20 60 63 3
Verbal 15 69 65 4

Note: No. : number of anchor items

According to this table, the total score is nearly the same as the last study but there are some
differences by items; that is, while the results of simple calculation (non-verbal) improved by 3%
from the first study, the results for verbal items, which requires reading ability and judgment,
decreased by 4%.

Here we would like to compare the results of the first and second studies for Japan, for
example 1 (Non-verbal problem) and example 2 (Verbal problem).

Ex. 1 FIMS: 84%  SIMS: 89% change =5%
Ex.2 FIMS: 51%  SIMS: 38% change =-13%
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While the results for the computation itern (Non-verbal item), like example 1, improved
remarkably, the results for the verbal item, like example 2, declined generally. Though Japanese
students' achievement was highly evaluated internationally, it can be said that there will be a big
problem for education in the future, because students' .results owe to only the ability of
computational skill, but the results for questions that require thinking and application power
declined.

Why did this occur? After the first study, there was a world-wide reform of mathematics
education. That is to say, the 1960s-70s were the decades of a movement of the so-called
"Modernization of Mathematics Education” ( New Math Movement), and in this period some new
concepts like "Set" were introduced in lower grades. And there was a problem in the USA and so
on, of the decline of computational ability because much emphasis was laid on teaching these
concepts; and, in fact, that was proved in the IEA's study. But the achievement of Japan was the
reverse of it. 1t can be thought that the teaching and learning of mathematical thinking was not
fixed, while teachers crammed students with knowledge and techniques due to the hard entrance
examinations.

(3) Growth of Score Between Pre-test and Post-test for Pop. A

For students in Pop. A in Japan, a pre-test at the beginning and a post-test at the end of the
school year were conducted, with 60 common items, in order to see whether achievement
improved during the period. The change in percentage of correct answers is examined below for
32 of the 60 items which had already been taught in the previous year (at the elementary school
level).

Table 7 shows the percentage of correct answers in the pre-test (X) and the post-test (Y), and

the percentage of answers that were correct both in pre- and post-tests (XNY).
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Table 7 Change in Achievement between Pre-tests and Post-tests: Pop. A

Content Pre-test (X) Post-test (Y) XNY
Arithmetic 54% 58% 37%
Algebra 59 63 41
Geometry, 65 72 51
Statistics 59 63 43
Measurement 64 68 50
-Overall ) 58 62 42 -

As an example, in the content of Arithmetic, the percentage of correct answers was 54% in the
pre-test, whereas it was 58% in the post-test, an apparent increase of 4%. But only 37% of the
students answered correctly in both the pre- and post-tests. In other words, Table 7 shows that
17% of the students who had answered correctly in the pre-test answered incorrectly in the post-
test, while 21% who had had the incorrect answer in the pre-test had the correct answer in the post-
test.

In this way, by judging from the real percentage of correct answers (the percentage of those
who answered correctly in both the pre- and post-tests), we see that the percentage of those who
gave a correct answer in the pre-test, but failed to do so in the post-test, is, respectively, 19% in
Algebra, 14% in Geometry, 16% in Statistics, and 14% in Measurement. The corresponding
figures for improved performance are 22% in Algebra, 21% in Geometry, 20 in Statistics, and
19% in Measurement.

Extrapolating from the results of these studies on the content which had already been taught to
students, we may conclude that the value obtained by subtracting approximately 16% from the
(apparent) percentage of correct answers should be regarded as the real percentage of correct
answers. This value may also be regarded as an index of fixedness of an achievement to students.

Here examples of the items are given. The following are the problems for which the

percentage of correct answers was low.
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(a) "A runner ran 3,000 meters in exactly 8 minutes. What was his average speed in meters per
second?" (This item was already cited earlier)
Pre-test (X) 33% Post-test (Y) 38%

Correct in both tests ( XNY ) 17%

() "In a school of 800 pupils, 300 are boys. The rate of the number of boys to the number of
girls is" (This item was already cited earlier).
Pre-test ( X)) 34% Post-test ( Y ) 31%
Correct in both tests (XNY ) 12%

(¢) lstrow 1
2nd row -1
3rd row 1-1+1
4th row 1-1+1-1

5th row 1-1+1-1+1

What is the sum of the 50th row?"

Pre-test (X) 35T Post-test (Y) 42%
Correct in both tests ( XNY ) 18%

(d) "30is 75% of what number?"
Pre-test (X ) 46% Post-test 47%

Correct in both tests ( XNY ) 28%

These are verbal problems which require a complex operation of thinking, and are exarnples of
items for which the performance was relatively low.
Next, examples of items for which the percentage of correct answers was high are given in the

following.
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() "2/5 + 3/8 = " (This item was already cited earlier.)
Pre-test (X) 84% Post-test (Y) 89%
Correct in both tests ( XNY ) 78%
This is an easy problem involving calculation of fractional numbers, also with a high degree

of performance.

t9) A B
P Q

"In the figure above, the length of AB is 1 unit. Which is the best estimate for the length of
PO

A. 2 B. 6 C. 10 D. 14 E. 18

Pre-test (X) 82% Post-test (Y) 87%

Correct in both tests ( XNY ) 73%

These examples show that for problems which require a full understanding of their content for
solution, that is, for sucl: problems which belong to the verbal problem domain, the degree of

fixedness is low.

4. Attitudes toward Mathematics

In these studies, students were expected to give answers for mathematics tests and also for an
inquiry questionnaire about their attitude toward mathematics. It included an inquiry questionnaire
which consists of seven domains: "Mathematics as a Process," "Mathematics and Myself,"
"Gender Stereotyping,” "Mathematics and Utility," "Calculators, Computers and Mathematics,"
"Home Support for Mathematics" and "Mathematics in School." Here I would like to consider
students' responses on "Mathematics in School.” This inquiry questionnaire requested each
student to respond about various Mathematics in School items, whether it is important, or is

difficult for him or her, and whether he or she likes it. They prepared 17 items for Population A
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and 20 for Population B as in the following examples: (1) checking an answer to a problem by

going back over it, (2) memorizing rules and formulae, (3) solving word problems, and (4)
solving equations. Figures 3a, 3b and 3c show the box-plot distributions for the above items. In

the graphs, Japanese students are located in black points.
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Figure 3 Mathematics in School

According to the results for the 20 countries/systems, many students had a favorable opinion
of school learning in Nigeria, Sweden and Israel, and reversely, many students felt some
difficulty in school mathematics and disliked it in Japan.

In the case of upper secondary students, the results were similar to those of lower secondary
students in Japan. It showed that the index of the degree of importance of mathematics learning in
school was average; but, on the contrary, tliere were many students who felt difficulty and dislike
it. As a consequence of other inquiries about the results of the questionnaire, we can see that the

proportion of negative responses is larger than other countries. And we need to be concerned

about that.

5. Concluding Remarks

From the data and analyses, several generalizations can be made, particularly as they may bear

on policy formulation for future goals. These are as follows:
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(1)

(2)

3)

(4)

(5)

(6)

Although achievement in the fundamental techniques of calculation can be viewed, in
general, as satisfactory, the attainment levels cannot be regarded as acceptable for
problems which require a high degree of thinking and comprehension.

Specifically, the achievement declined compared with the previous study for such
problems as "ratic" and "proportion," which are taught in the upper grades of elementary
school, and for verbal problems.

It might be hypothesized that the introduction of the New Mathematics in the mid-1960's
lowered the calculation ability of students in every country. In the case of our country,
however, the contrary seems to be true: calculation ability improved in general, though
the achievement levels in problems requiring a high degree of thinking and
comprehension (which is stressed in the New Mathematics) was not as high as in the
previous year.

For Pop. A (students in the lower secondary schools), the change in mathematics scores
over the one-year period was measured by pre-tests and post-tests. The data show that
the degree of fixedness was low for verbal problems and for problems concerning ratio,
proportion and percentage. From this, it is concluded that more attention must be paid to
these matters and to the methods of teaching in the elementary school.

As for the consequences of international comparisons about interest and attitude, it
became evident that a lower proportion of students have a favorable opinion than in other
countries, and that there is a problem in the learning method.

As was recently found in the case of entrance examinations in our country, the
improvement in calculation ability in this study may be regarded as due partly to
"cramming" at some place other than the public school (like Juku--an informal outside
school). However, irr order to assure higher scholastic achievement, it is necessary to
develop new methods of teaching this subject in the public school setting under

conditions which are not so pressure intense.
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In revising the Courses of Study, the Ministry of Education of Japan took account of
anticipated changes in our society and the resulting changes in the life and attitudes of students. It
intended to provide students with a sound foundation for lifelong learning. The basic aim of the
revision of the Courses of Study is to ensure, keeping the 21st century in view, the development of
student with rich hearts who will be capable of coping with the changes in our society such as

internationalization in different sectors and the spread of international media.
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SOME REMARKS ON PROBLEM SOLVING

Changping Chen

East China Normal University

Since the appearance of the American NCTM document An Agenda for Action in 1980, the
idea that "Problem solving must be the focus of school mathematics" has been widely spread and
heralded. This note will give some remarks about the problem of how to carry out the idea

mentioned above effectively.

1. Lessons From China

In China we have had a long term tradition to require the students to do a great number of
exercises in learning mathematics. The Chinese high schools commonly use one volume of
mathematics text for each semester, and each volume contains about 300 exercises which are
assigned to the students as homework. It means that the students have about 15 exercises per
week as homework from the text. But in reality, the number of exercises which the students are
required (by their teachers or parents) to do or voluntarily do is three to four times, and sometimes
going up to seven times or more, the number contained in the texts.

This tradition has a deep rooted cultural background in our country. In fact, the ancient
Chinese considered mathematics as some kind of techniques as revealed by the names of our
ancient mathematics books, such as the famoas Nine Chapters of Arithmetics, the original name of
which (<, ¥ ) £> ) really means "Nine Chapters of Calculation Techniques.” And to a
Chinese mind, the best way to grasp some kind of techniques is to follow the old proverb

"Familiarity engenders skill."

This proverb has such a strong influence that it leads some mathematicians to claim that in
order to be good in mathematics, one has to do ten thousand exercises. This is practically the
prevailing philosophy for learning mathematics in China. As the exercises in our school texts are

not only routine ones, their doing should be considered as the activity (or part of the activity) of
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problem solving, and in this sense one can say that problem solving has gained emphasis in
mathematics education in China.

And what is the result? As an advantage, it can be seen that our students gain some good
training in doing mathematics, as shown in all kinds of competitions, domestic and international,
including the International Mathematics Olympiad. But its price is rather high. At least two kinds
of damage are caused by it. The first is that the students are overburdened and consequently can be
hurt physically and mentally. The second is that it produces haters, but not lovers, of mathematics.

Many lessons can be learned from our case. For example,

* Qur activity in problem sclving must be greatly improved. As doing mathematics is not just
doing textbook exercises, we must connect our school mathematics education more closely to the
world outside of school, so as to help the students develop their ability to cope with real world
problems, commurnication and appreciation of the predilection of mathematicians for quantities,
shapes and patterns.

* The most important point is that we must recognize the fact that different students can have
different temperament, different tendency, and different interest; therefore we must be content with
moderate requirements in mathematics for most of the students while we certainly can and should

help the mathematically able students to learn more.

II. Problems Versus Exercises

Some people make a distinction between problems and exercises by stating some characteristics
of the problems, such as the following ones:

1. Problems are non-routine;

2. Problems have a real world situational background (or briefly, they are applicable).

3. Problems are such that for their solution, some research is needed. Especially, for example,

they are over determined, under determined, open-ended, etc. (I like to call them non-

ordinary).




This distinction has the advantage to emphasize letting the students experience some non-
routine problems too. But in doing so, we must not go too far to consider non-routine as superior
to routine, or applicable as superior to pure, or non-ordinary as superior to ordinary, because all
kinds of problems have their merits in the instruction. Our problem is only that of when and how
to use which. Moreover, in carrying out problem solving in instruction, our task should focus on
the methodology side of the problem and not on its type. For example, the problem of finding the
sum

1+2+3+..+10
is just very routine, and it was Gauss' method which makes it fascinating. And the problem of

finding the position of point P on a line, on which n robots are located, such that the sum of the

distances from P to each robot P‘.

n
Z‘PPil +‘,+'rvr=%

be a minimum, is attracting, not because of its appearance of non-routineness, but because it is a
simple and good example showing the effectiveness of induction for solving problems.

A point which I wish to argue especially here is that we must pe careful in using the non-
ordinary problems because, though they can be good for the mathematically able students, they
may be bad for the average students. Let us consider, for example, the now becoming classical
"Marble Problem" which can be formulated in the following way:

"Give a definition of denseness to a set, consisting of 5 points on a plane”
or, in a more intuitive way, as follows:
"Given two sets of (A) (B), each of which consists of five points lying on a plane as shown in

Fig. 1. How to determine which set is denser than the other set?
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A [(B)

Fig. 1

In certain publications, some answers to this probjem are given (among others) as follows:
1. It (the denseness) is measured by the area of the pentagon with the given points as vertices.
2. It is measured by the length of the periphery of the above mentioned pentagon.
3. It is measured by the size of the circle which contains the given points.
But ail these answers are problematic. For the answer 1, Fig. 2 shows that by definition, (A) is
denser, while by intuition (B) is denser, where (A;. . ‘ve points lie equidistantly on the whole
diagonal of the square, and (B): The five points lie closely with four of them iying on the same

diagonal while the other one lies outside the diagonal.

(3)

Fig. 2
For the answer 2, Fig. 3 shows that by definition (A) is denser while by intuition (B) is denser,
where (A): Given points are P,Q,R,S,T with Q.R.S,T being the vertices of a square, while P lies
on the line MN which bisects QT and RS, and PM < MN, and (B): The points Q, R, S, T are the
same as before while P’ lies on MN with MP' > PM.




Fig. 2
For the answer 3, Fig. 4 shows again that by definition, (A) is denser while by intuition (B) is
denser, where (A): The given points lie equidistantly on a circle with radius r, and (B): The given

points lie closely together on a circle with radius R>r.

(A) —(8)

O

Fig. 4
If these complexities would be good for the able students in offering them an opportunity to do

some research, they can probably cause psychological hardship to the average students.

ITI. About the "What'" and "How"

If we conceive of "problem solving" as an approach of teaching and learning mathematics,
then besides it we have to solve the problem of "what to teach and to learn in the schools." A story
of mine perhaps can help to clarify the question. In a seminar at a university, someone raised the

following problem
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"Given n sticks of matches, find the number fin) of triangles which can be constructed with
these sticks."
For example we have
n34567809
fm) 1 01 1 213
I spent a whole day solving this problem and found its solution in the following form
Rl =% [(n1+1-30)/2]
k=0
f2n) = OEO [(n—1)-3k)/2]
k=0
for every positive integer n, where the expression [x] means the positive integral part of the
number x or zero, such as [2.5] =2, [1/2] =0, [-2] =0.

My work gained some praise at the seminar, but a friend of mine commented afterwards that
"you are wasting your time, you should spare it for better mathematics." My friend's comment
reminded me of Dieudonne's address to the OEEC serninar at Royaurmnont in 1959 where he
claimed that

"Euclid must go!"

Though I don't think that Euclid should go exclusively, I do appreciate very much
Dieudonne's idea to let the students learn modern mathematics, i.e. the modern mathematical
concepts, modern mathematical language and modern mathematical methodology, and not to waste
time over such materials which, in Dieudonne's words, "has just as much relevance to what
mathematicians (pure and applied) are doing today as magic squares or chess problems.” Every

time I rereaa Dieudonne's address, I do think that while we emphasize the importance of a probiem

solving approach, we must pay more attention to the problem of "what to teach and what to learn."

54




REFERENCE

National Council of Teachers of Mathematics (1980) An Agenda for Action, Reston, VA: The

Council.

55
iy,




»HOW TO LINK AFFECTIVE AND COGNITIVE ASPECTS
IN THE MATHEMATICS CLASS -- Comparison of Three Teaching Trials

on Problem Solving

Nobuhiko Nohda

Uziversity of Tsukuba

1. Background

For about a hundred years, computational skills in mathematics have been highly emphasized
in the elementary and secondary school mathematics curriculum in Japan. Computational skills
have been emphasized in classroom lessons, and solutions using paper and pencil, the abacus and
mental computation have been used to solve problems in the classroom activities. Japanese
students have studied some skills in computational problems. It is well known that the Japanese
students got higher scores on the international achievement tests during the first and second IEA
studies of mathematics, and recently, the International Mathematical Olympiad. However, there
are still many Japanese students in junior and senior high school who do not like mathematics and
have lots of anxiety about it.

We would like to assert some tentative conclusions on the effectual link between affective and
cognitive aspects in the use of computational tools in problem solving, in particular, the pocket
calculator. Pocket calculators seem to be a more efficient way of bringing student's thinking into
mathematical problem solving than paper and pencil. This report on the comparison of the three
teaching trials on problem solving has some effectual outcomes in connection with the affective and

cognitive aspects.

We conclude in asserting the value of the use of the pocket calculator in the process of
understanding, solving and retention of the effect. This research suggests that higher-order
thinking of mathematical problem solving is developed especially by the use of the pocket
casculator. It is easier for students to operate on a complex number given using the pocket
calculator since it is transformed into a more simple one. The value in the use of the calculator
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process on understanding, solving and extending the problem lies in its usefulness for the students
to get the structure of the problem more easily. Also, it is useful for the students to forecast

solutions and to make similar and general problems.

2 . Introduction

In 1989, the latest version of curriculum recornmendations was published by the Japanese
Ministry of Education (1989). Estimation is emphasized more in this version than in the former
one. This curriculum was designed to help students have a good sense of numbers, and with a
goal that students should become good "estimators.” In this new curriculum, mental computation,
paper and pencil computation, calculator use and estimation are given more attention.
Opportunities are also provided for Japanese students to examine appropriate situations for
estimation and checking the results of exact computations by estimating. All of the
recommendztions above are implemented in the elementary school mathematics curricula that began
in 1992.

The value of teaching estimation and problem solving are commonly acknowledged and are
clearly stated right now, both in the forthcoming Japanese mathematics curriculum and in the
NCTM Curriculum and Evaluation Standards. These theoretical products concerning the processes
of problem solving and computational estimation have many similar aspects and characteristics to
the promotion of higher mathematical thinking (Reys, 1990).

We have investigated the use of estimation, calculator and paper and pencil computation in
situations of mathematical problem solving. There are some standpoints about estimation in its
relation with other tools of computation. One point is that estimation is one of computation, the
same as paper and pencil, mental and calculator computation. Another point is that estimation
serves to compensate for calculator and paper and pencil computation. Furthermore, there is a
standpoint that estimation itself involves problem solving performance. This is connected with the
opinion that it is important to study the value of the use of estimation in mathematical problem

solving. We have a supposition that estimation is useful to understand a problem and to make a
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plan, and useful to make a check on the way of solving the problem, and decision making and
outcomes of executed plans. To examine these standpoints (i.e., the effect in the use of these

alternatives and our supposition), this research was conducted.

3. Three teaching plans with computational alternaiives in problem solving

Three teaching plans were done to study the effects of teaching trials by using estimation,
calculator and paper and pencil computation as computational alternatives in a mathematical
problem solving context. These lessons were conducted in a fifth-grade classroom of an
elementary school in a small city near Tsukuba city on December 17, 1990. The problems and
processes of the lessons were almost the same, except for the differences in the lessons as the
result of computations gotten by estimation, by calculator and by paper and pencil. The lessons
that have used estimation and a calculator were done by the same teacher and the other lesson was
done by a different teacher.

Problem used in the lessons

Imagine the earth as a big globe.
Its radius is about 6378.136 km.
If we tie a rope one meter above

the equator of the earth, what is

the difference between the original 6.400,000m

circumference and the length of the rope?

We chose the earth problem for the following reasons: We theught first that a true problem
should satisfy the following three factors:

(1) Students should be able to understand the problem.

(z) Students should not be able to solve the problem by the use of a routine method.

(3) Students should have a desire to solve the problem.
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Second, we thought that problem solving in a process and a problem solving process uses acquired
mathematics knowledge and skills, which can be applied to solve the problem by an individual or
in a group discussion. Furthermore, the problem used in these lessons was a thought experiment
(Gedanken Experiment) that had some features as follows:

(4) The thought experiment had a process of idealization or abstraction.

(5) The thought experiment needs the conjecture of the results of problem solving before

doing so.

(6) We could forecast some ways of solving the problem by trying the thought experiment.

We explained the three teaching plans to these teachers: The estimation lesson was to solve a
problem by replacing any number with a simpler number, which was chosen by the students
themselves. If estimation was taken: a process to find an approximate answer to a problem, this
lesson was an estimation teaching from a process to understand a problem, and a process to
evaluate the decision made and also the outcome of the executed plan.

On the other side, we tried two lessons of solving the problem by using the given number
which was not a simple number, about 6378.136 km. and used a calculator or paper and pencil to
solve the problem. These two lessons were almost the same processes as the estimation lesson.

The specific characters of each lesson were as follows:

(a) Lesson emphasized that students use estimation.

1) To understand & problem by replacing a given situation with simpler numbers, that is
an idealization of complicated situation into a clear situation by repiacement.
2) To solve the problem with simpler numbers.
(b) Lesson emphasized that students use a calculator.
1) To get an answer easily by calculators.
(c) Lesson allowed students to compute by paper and pencil.
1) Let students compute numbers which come from real situations.

There were some common characteristics among these lessons such as a whole class teaching
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style and the lesson was mainly guided by the teacher, and sometimes the teacher asked each
student some questions or opinions individually. In these lessons, the teachers asked students to
forecast an answer and way of solution before they solved the problem, teachers tried to emphasize
verification of a solution and teachers let students reflect on this process. Also, the teachers posed

an additional problem.

4. Practical trials to teach the lessons in problem solving context
(1) Teacher explained the earth problem using a big terrestrial globe.

Students were asked to forecast the difference of the length, and their forecasts were as

follows:

Table 1. Student's forecast (%)

Calcu.(35) Estima.(35) Paper-P.(35) Sum(105)
a) about 6000 km. 8.6 2.9 5.7 5.7
b) about 1000 km. 229 2.9 31.4 19.0
c¢) about 1000 m. 31.4 57.1 14.3 343

#d) about 6 m. 37.1 37.1 48.6 41.0

e) We can't guess 0 0 0 0

Students' forecasts in the paper and pencil class were excellent, but the other classes did not
show such good performance of forecasting (see Table 1).
(2) After the students showed their forecast in each classroom, they were asked to solve the

problem. This time, they recalled the formula

C =2 x7n xR (C: Circumference, R: Radius, =: 3.14).
The estimation class got excellent scores on all items. The calculation class also had good
scores on almost all items. But, the paper and pencil class did not understand the problem: thus.

they did not get the expression, calculation and correct answer to the problem (see Table 2).




Table 2. Students expression, calculation and correct answer (%)

Calcu.(35) Estima.(35) Paper-P.(35) Sum(105)

f) expression 60.0 71.4 25.7 52.4
g) calculation 57.1 71.4 14.3 47.6
h) correct answer 68.6 71.4 11.4 60.0

In all classes, the students showed difficulties in dealing with this computation using the exact
number. Therefore, the teacher in the estimation class allowed students to estimate and choose
simple numbers to replace the original numbers. Students in this class chose numbers such as R =
6,000,000, 640,000, 1000, 10 meters and so on. Teachers in the other classes allowed the
students to use other letters or special numbers. Students used a "box" or alphabetical letters.

The teachers are the ones who determine the correct answer, including both the expression
and the calculation of problem solving in Japan. They emphasized the expression of equations of

the problems. Students' expressions are shown in table 3.

Table 3. Characterization of student's expression (%)

Student’s expression Calcu.(35) Estima.(35) Paper-P.(35) Sum(105)

i) synthesis ex. 51.4 343 11.4 324
J) analysis ex. 5.7 22.9 8.6 12.4
k) [, X expre. 2.9 0 2.9 1.9
1) special num. 0 14.3 2.9 5.7

Note: Synthesis expression: (6,000,000 + 1) x 2 x 3.14 - 6,000,000 x 2 x 3.14
Analysis expression: 6,000,001 x 2 x 3.14 = 37,680,006.28

6,000,000 x 2 x 3.14 = 37,680,000
37,680,006.28 - 37,680,000 = 6.28  A.6.28 m.

Letter expression: X+1)x2x3.14-Xx2x3.14 =628

Special number/10 m.: (10 + 1) x2x3.14 - 10 x2x 3.14 = 6.28
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In students' answers of the problem solving used expressions, calculations and the correct
answers, the estimation class was the most ~xcellent and the calculation class was good. For
example, the radius of the globe used by many were simple numbers like 6,000,000, 640,000,
1000 and 10 m. in the estimation class. Only one student in the paper and pencil class used the
special number of the radius of the globe as O m., which astonished the teacher as well as the
students in the class.

(3) At the end of these lessons, the teacher asked the students to solve the application

problem of half circles as follows:

Application Problem

Compare the length of a half circle with
three small half circles in the given
half circle and check the correct item in
the following three items:
m) Half circle is longer than three small

halif circles.
n) Half circle is shorter than three small half circles.
# 0) Half circle is the same as three small half circles.

0) correct answer 94.3 91.4 74.3 86.7

This problem was asked in order to check the post-effects of the teaching. Students in both

the calculator and estimation classes understood and solved the application problem, while the
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Table 4. Students Answers to the Application Problem (%)
Calcu.(35) Estima.(35)  Paper-P.(35) Sum(105)




paper and pencil class did not understand and solve it well, because a lot of students in this class
did not explain the reason why "half circle is the same as three small haif circles.”

(4) As soon as the lesson was finished, the teacher distributed the Check List of Feeling
about the lesson to students. The Check List of Feeling is to make a link between the affective and

cognitive aspects in mathematics classroom activities - students' responses were as follows:

Check List of Students' Feeling After Lesson

Please read the following sentences, then mark the choice fitting your feeling. At the beginning of
the lesson,

(1) Do you like mathematics : Yes 3 2 1 No

lesson everyday?
After reading the task,
(2) Have you understood the task? Yes 3 2 1 No

(3) Do you have an interesting

the task? Yes 3 2 1 No

(4) Have you solved the task? Yes 3 2 1 No

(5) Have you forecast the answer

before solving the task? Yes 3 2 I No
While you are solving the task,
(6) Please mark the item fitting your impression of the following:
(a) You can solve the task the same way as your forecast.
(b) You changed the way of task-solving while solving it.
(¢) You failed to solve the task the same way as your forecast, thus
having a hard time on it.

(d) others: please write your reasons, briefly.
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At the end of the teaching,

(7) Do you have lots of ways of solving? Yes 3 2 1 No

(8) Are you satisfied with the lesson? Yes 3 2 1 No

(9) Can you understand the

explanations by the teacher? Yes 3 2 I No
(10) What kinds of subject do you like in a lesson?

If you have some ideas or topics about the problem, please write them briefly.

Table 5. Numbers of student's choice to Yes (3) (%)

Student's Choice Yes Calcu.(35) Estima.(35) Paper-P.(35) Sum(105)
(1) Like Mathematics 28.6 14.3 371 26.7
(2) Understand Task 343 314 . 514 39.0
(3) Interesting Task 37.1 28.6 45.7 37.1
(4) Solve the Task 48.6 48.6 51.4 49.5
(5) Forecast the Task 45.7 40.0 314 39.0
(6) Solve Task as Thought 40.0 28.6 314 333
(7) Lots of Ways of Solving 45.7 25.7 54.3 41.9
(8) Satisfied with Lesson 54.3 40.0 314 419
(9) Understand Explanation 71.4 60.0 48.6 60.0

At the start of the lesson, lots of students in the paper and pencil class had a good feeling and
a few students in the estimation class were satisfied with the task, but lots of students in the
calculator class did not have any good feeling at all. During the process of problem solving, each
class was in confusion. At the end of the lesson, the calculator class had excellent feelings towards

the lesson, but the paper and pencil class was not satisfied with the lesson.
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Figure 1. Numbers of student's choice to Yes (3)

(5) After we tried the practical lessons with computational alternatives in problem solving
about one month later, the test dealing with the retention of the effect and students' ability to

develep a similar problem was conducted.
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Retention Problem

Compa . the length of a half circle
with tv o small half circles in the given
half circle. Check the correct item in
the following three items:
p) Half circle is longer than
two small half circles.
q) Half circle is shorter than rtwo small half circles.

#1) Half circle is the same as two small half circles.

Table 5. Students Answers to the Retention Problem (%)

Calcu.(33) Estima.(35) Paper-P.(36) Sum(104)

1) correct answer 87.9 88.6 80.6 85.6
Extension Problem: Make as many similar problems to A as possible.
Table 6. Students Problem to the Extension Problem (%)

Calcu.(33) Estima.(35) Paper-P.(36) Sum(104)
s) all response 100 100 100 100
t) same problem 18.2 11.4 16.7 15.4
u) similar problem 30.3 11.4 11.1 17.3
v) general problem 24.2 28.6 13.9 22.1
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Students in the calculator class were the most excellent in making similar and general
problems, and the estimation class made many kinds of similar and general problems. Similar
problem means the same kind of mathematical structure as the original problem, and general
problem means different mathematical ideas from the original problem.

Many students dealt with calculator and estimation. In so doing, they were able to escape lots
of computation, thus enabling them to make many similar and general problems from the original
problem. The reason is that many students do not like long and difficult éomputations.

We could then assert some tentative conclusions on the effectual link between affective and
cognitive aspects in the use of computational tools on problem solving, in particular, the pocket
calculator. Pocket calculators seem to be a more efficient way in biinging student's thinking into

mathematical problem solving than paper and pencil.

5. Conclusion

We conclude by sserting the value in the use of the pocket calculator in the process of
understanding, solving and retention of the effect. This research suggests that higher-order
thinking of mathernatical problem solving is developed especially by the use of the pocket
calculator. It is easier for students to operate on the complex number given by using the pocket
calculator, since it is transformed into a simpler one. The value in the use of the calculator process
on understanding, solving and extending the problem lies in its usefulness for the students to get
the structure of the problem more easily. Also, it is useful for the students to forecast solutions
and to make similar and general problems.

Furthermore, we conclude by asserting the value in the use of estimation in the process of
understanding, solving and retention of the effeci. As mentioned above, it is useful for students to
replace the given number with a simpler number and to change to a simpler situation. The value in
the use of estirnation in the process of understanding, solving and extending the problem lies 1a its
usefulness for the students to get the structure of the problem more easily. Also, it is useful for the
students in forecasting solutions and making similar and general probleins.
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We want to close by using a quotation by Peter Griffin:

"Teaching takes place IN TIME and Learning takes place OVER TIME."

So, what are the relationships between teaching and learning? Iam drawn back to the
conjecture behind teaching takes place in time and learning takes place over time, that learning is a
process of maturation of the learner. The teacher cannot perform this process for the learner.
Rather, it is the atmosphere and environment created in the classroom by the actions of the teacher
which can raise the awareness of the learner and shift attention in such a way as to stimulate this

process of maturation in the learner.
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CRITICAL ISSUES IN PROBLEM SOLVING INSTRUCTION IN
MATHEMATICS

Douglas A. Greouws

University of Iowa

The importance of problem solving in the mathematics curriculum has been systematically
acknowledged in recommendations for school mathematics in the last decade. Indeed, in America,
the Agenda for Action zport (NCTM, 1980) declared that problem solving should be the
centerpiece of the curriculum and every reform-oriented report since then has advocated increased
attention to problem solving. The Curriculum and Evaluation Standards for School Mathematics
(NCTM, 1989), for example, highlight problem solving as a core objective at every instructional
level from kindergarten through high school. Given the prominence and attention problem solving
has received, one is naturally led to ask what is actually done with problem solving in schools and
how proficient are students in solving problems. I think it is fair to say that in the U.S.. and
perhaps world-wide, there is considerable dissatisfaction with problem solving instruction in
schools (see for example, Dossey, Mullis, Lindquist, & Chambers, 1988; Dossey, Mullis. &
Jones, 1993) and student progress in the problem solving domain has been disappointing: in fact.
many educators would call it dismal.

The purpose of this paper is to discuss issues and make suggestions that hold potential for
improving problem solving instruction and student learning. Special consideration is given to the
role of teachers and to classroam context throughout the paper. I begin with a discussion of the
meanings associated with the term problem solving and how they have influenced both instruction
and research. I suggest an immediate and somewhat obvious solution to the confusion that results
from the variety of meanings that exist. Then I make the case for beginning to realign thinking
about problem solving to include more of an orientation toward mathematical thinking. The

argument is based, in part, on the lack of progress flowing from current concepticns of problem
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solving, conceptions that give little regard to how it is taught and the context in which it is taught.
Several potential reasons for inadequate, shallow student problem solving learning are then stated
and used to identify three directions for study and change. These three directions are discussed
using the labels: reformed instruction, authentic teaching, and instructional context. Then special
attention is given to classroom culture including how it develops and its influence on students and
learning. Finally, the importance of teacher conceptions in determining classroom culture is
highlighted by summarizing results of two studies, a status study of teachers’ conceptions of
mathematical problem solving that I conducted and experimental work by Paul Cobb and his
colleagues. Since terminology is important in communicating within any field of study as well as
in advancing knowledge in the field, we begin with a discussion of the term problem solving.
Muitiple Meanings of Problem and Problem Solving

It is not surprising that the term problem solving has taken on different meanings at different
points in history, given the large shifts in emphases in education over the years. These educational
movements have included basic skills instruction, integrated curriculums, and outcome based
education to name a few. What is a surprise, and more of a concern, is that the term problem
solving is currently used to represent quite diverse ideas in contemporary research literature and is
used to convey quite disparate notions by researchers actively studying problem solving,
particularly researchers from such disciplines as psychology and mathematics, disciplines that
make important contributions to research in mathematics education. At one extreme, problem
solving is sometimes taken to include situations that require little more than recall of a procedure or
application Jf a skill. For example, Mayer (1985) using a traditional conditions-goal type
definition of prublem solving takes as problems for college students such tasks as writing an
equation o go with the students-professor problem! (Soloway, Lochhead, & Clement, 1982) and
the solving of linear equations in one unkuown. At the other end of the continuum, prooiem
solving is taken s broadly that it can almost be used synonymously with mathematical thinking

(e.g., Schoenfeld, 1992).

| Write an equation to represent “There are six times as many students as professors at this university.”
7
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The lack of consistency of meaning of the term problem solving causes several difficulties.
Whenever terms are used differently, problems of communication result. Thus, findings from one
problem-solving study may initially appear to contradict findings from another study when in fact
the results are not even amenable to comparison because they involve two very different
phenomena. The problem is acute because there is a substantjal research base in mathematical
problem solving that should not be ignored but rather built upon to develop a theoretical framework
to move the field forward in a productive way. In order to make sense of this research base one
must take into account the meaning ascribed to problem solving in each study. On the surface it
may seem important to alleviate this interpretation problem in the future by irying to reach
consensus on the meaning of the term, but I suspect this would be difficult if not impossible to do,
s0 an appropriate solution may be to strongly encourage researches to carefully characterize how
they use the term including a full verbal cescription of its meaning and numerous examples of
problems that fit the conditions of the definition.

In passing, it is important to point out that the value of interdisciplinary research is now
widely accepted. Early clarification of terms in research team activity may enhance their
produciivity. Isay “early” because one assumes that eventually there is clear communication on
such teams, but the soouer this is accomplished the better. In summary, it seems that at a
minimum careful attention must be given to the use of the term problem solving in interpreting
existing literature, in facilitating multidisciplinary research efforts, and in making future literature
more uscful.

Aligning Problem Solving With Mathematical Thinking

For many years a problem has often been conceived of as a situation where something is to be
found or shown and the way to find or show it is not immediately obvious. That is, the situation is
unfamiliar in some sense to the individual and a clear path from the problem conditions to the
solution is not apparent. As psychologists often put it, there is some kind of blockage present that

prevents reaching the goal state. Some researchers also prefer to indicate that there is no problem if
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the student has no desire or motivation to find the solution to the given situation. Definitions of
problem solving that have the preceding characteristics, where there is a focus on moving from
conditions to an end state, can be found in many places in the literature. For example, Polya
(1962) indicates that “to have a problem means: to search consciously for some action appropriate
to attain a clearly conceived, but not immediately attainable, aim.” (p. 117)

Based on definitions like the preceding, problem solving is often loosely defined as solving
problems. Making problem solving the centerpiece of a mathematics program or the focus of
instruction thus becomes a matter of focusing on problems as a topic of instruction. This leads to
the recommendation that the school curriculum include lots of problems. Sometiines the stress in
this recommendation is on including certain types of problems. For example, the thrust may be on
problems that reflect real world applications, or problems that will likely call for specific solution
methods to solve them (e.g., make a diagram), or problems that introduce new concepts (e.g..
Rachlin, Matsumoto, & Wada, 1992). Sometimes the emphasis is on incorporating a variety of
problems.

My point is that considerable energ, is, and has been, spent on endeavors to increase in
appropriate ways the problem base in the curriculum. Furthermore, substantial programs of
research have dedicated their efforts to studying how students solve problems in the curriculum
and then using these insights to develop and test instructional programs. A classic program of
research in this area was conducted by Lester, Charles, and colleagues (see for example, Charles &
Lester, 1984). In their work specific strategies for solving problems were identified and taught to
classes of students in circumstances where student growth could be compared to control situations.
This research, along with the research of many others (e.g., Lucas, 1974), has shown that specitic
problem solving strategies such as guess-test, make a diagram, work backwards, make a table, and
so on, can be successfully taught to students, that students learn them, that students use them when
solving problems, and that this type of instruction results in improved student performance on a

reasonably wide range of problems.
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What we have shown to this point is that the traditional conception of problem solving, as
moving from given conditions to something to be found or shown, has had both positive and
negative outcomes. On the one hand, a large collection of problems have been compiled and useful
research findings about strategy acquisition and instruction have been added to our knowledge
base. On the other hand, the narrow conception of problem solving has restricted our thinking in
both instructional and research areas and also resuited in significant shortcomings in our students.
As Lester (1985) indicates, most problem-solving instruction not only does not enable students to
use their heads, but in fact it does more harm than good.” (p. 41)

Something important does indeed seem to be missing because many students are not able to
respond to mathematical situations in ways that are expected and desired. For example, consider
the following problem from the Fourth National Assessment of Educational Progress (Lindquist,
1989): “Suppose vou have 8 coins and you have at least one of each of a quarter, a dime, and a
penny. What is the least amount of money you could have?”’ (p.16) Only 23 percent of Grade 7
students and 43 percent of Grade 11 American students were able to select the correct answer in a
multiple choice format composed of 4 choices. These are truly disappointing results.

The preceding illustration is not an isolated instance, in fact, it may be quite representative of
how little sense making or reality testing students do when working within quantitative situations.
For example, when students are asked to estimate answers to quantitative situations they often
exhibit a lack of flexibility of thinking that is of concern. This lack of flexibility of thinking is not
limited to American students, but seems to be common in other countries as well; see, for example,
the study by Reys, Revs. Nohda, Ishida, Yoshikawa, and Shimizu (1991). The issue is not
students' inability to interpret un answer, or be flexible in their thinking, or some otlier single
behavior that might be remedied in the short term by some specific teaching strategy. Instead, the
concern is that all these shortcomings, as a collection, indicate that student thinking is often

shallow and withtout reflection when confronted with mathematical situations of a variety of types.
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This missing component in students’ problem solving ability has been discussed by

researchers and educators and described in several ways. Some describe the missing link by
indicating that we need to assist studerits in developing their mathematical thinking, others state that
we need to empower students so that they can use the mathematics they learn, and still others
declare that classroom instruction needs to focus more on sense-making and developing
conncctions. A common theme in these suggestions is that while progress has been made in
helping students solve problems, the learning about problem solving that occurs is either too
narrow to apply to other situations or the learning has been accomplished in an instructional
manner or instructional context that neither allows nor facilitates students using it in other
situations. In some ways the situation relates back to the classic learning theory problem of the
transfer of learning to new situations. I think, however, that this is too broad a characterization of
the situation to be useful, and most researchers now have a scaled back notion of the extent of
vertical transfer that can be expected, scaled back in comparison to the views of learning
.ychologists and theorists of past decades.

Recall that the position taken in this paper is that problem-solving learning under current
instruction too often results in shallow, inadequate learning. That is, students are unable to apply
what they have learned to new situations, and their responses to problems too often do not make
sense. They are frequently insensitive to absurd answers, they are not inclined to interpret and
work with situations mathematically. While the preceding descriptions are not fully developed,
they should communicate the shortcoming that must be addressed by teachers and researchers.
While there are no doubt many approaches to improving the situation, the aim of this paper is to
focus on reformed instruction, authentic teaching, and instructional context as factors that hold
significant potential for enhancing the kinds of student learning being advocated in current reform

efforts.
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DIRECTIONS FOR STUDY AND CHANGE

As will become clear in the following discussion, reformed instruction, authentic teaching,
and instructional context are not to be considered independent dimensions of the teaching and
learning process. Rather, they should be considered ideas that overlap in their domains yet each
has distinctive focus with regard to change. Further, the ideas not only overlap but they are linked
to one another and changes in one often cause changes in the other. The interrelatedness suggests
that as each is studied the other must be taken into account.

Reformed Instruction

Reformed instruction, as used here, refers to problem solving instruction that takes account of
recent advances in cognitive psychology. The role of student knowledge in the problem solving
process is one place where cognitive science can, and perhaps should, influence teacher planning
and classroom instruction. As we shall see, however, the specific ways to use these advances in
improving teaching requires interpretation and judgment on the teacher’s part. Further research is
needed to provide guidance to teachers in this area.

Not too many years ago it was quite comimon to assume that if an individual were taught all
the prerequisite knowledge needed to solve a problem, then positive transfer would likely occur
and the student would find the solution to the problem. Prerequisite knowledge included
definitions of terms in the problem, formulas relating problem conditions, the ability to represent
problem conditions, and the necessary algorithms whether they be computational, algebraic, or
other. Simply put, it was thought that if needed knowledge was in place, then problem solving
success could be expected. Declarative and procedural knowledge, that is, “knowing that” and
“knowing how” types of knowledge, are still deemed important in solving problems, but
researchers are, as we shall see, becoming more aware of the importance of other factors as well.
The reader interested in a more detailed discussion of declarative and procgdural knowledge in a
general setting should see Anderson (1976) and for a discussion of the relationships between the

two types of knowledge in a mathematical settings should see Hiebert (1986).
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The inclination to have declarative and procedural knowledge in place before beginning
problem solving instruction still underlies some thinking about how to achieve success in problem
solving, and probably guides most instruction on problem solving in schools. Current thinking by
many researchers, however, now emphasizes that the presence of such core knowledge may be
necessary for solving problems, but it is certainly not sufficient. What needs to be considered is
how that knowledge is structured in the mind of the problem solver (see for example the work of
Silver, 1979, 1981) and the kinds of access the student has to it. Not only is access important but
how the knowledge is related to other knowledge also seems to be critical. At one time this notion
of relatedness and the idea of meaning were considered under the general term, understanding, but
research and theory building have moved the field forward and there are now have much more
specific characterizations of understanding. These descriptions of understanding and the theories
about the role of knowledge in the problem solving process, need rigorous research validation and
classroom tests of their implications. Even in their present form, however, they provide useful
insights for the classroom teacher seeking to improve problem solving instruction.

A framework for understanding learning and teaching for understanding that seems to hold
considerable promise is one advocated by Hiebert and Carpenter (1992). Included in their model
of understanding are detailed descriptions of how internal and external representation of ideas
might be considered and discussions of how these representations may develop and be linked.
They discuss understanding as part of a model of cognitive structure where ideas are represented as
nodes of a network and relationships between ideas are thought ¢f as connections between the
nodes. Thus they describe understand as:

A mathematical idea or procedure or fact is understood if 1t is part of an iriternal
network. More specifically, the mathematics is undeistood if its mental
representation is part of a network oi representztions. The degree of
understanding is determined by the numbc: 24 the streng?h of the connections.
A mathematical idea, procedure, or fact :s undezstoed theroughly if it is linked to
existing networks with stronger or mo- aumerous coanections. {p. 67)

Some of the basic ideas in the IHiebert and Carpenter framework go back to the classic work

of William Browaell, Henry Van Engen. and others, yet the framework makes an important
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contribution to the field through the detailed elaboration of the ideas in the framework and through
the discussion of how it applies to many situations. For example, they show ho: - the model can
assist ° u helping us understand many existing result findings. Research findings on such topics as
manipulative materials, where the results are mixed, become clearer when examined under the
tenets of their theoretical framework.

The contributions of cognitive psychology are not limited to creating models of mathematical
understanding. How students represent ideas mentally and in physical settings, and the
relationship that develops between them, is another area where significant progre.ss is being made.
For additiunal details see the book by Janvier (1987). Exciting wozk is also being done using
technology. For example, students can create various representations, such as an equation, table,
and graph on a computer screen and then link them so that a change in one representation results in
a change in the other. Further, the changes are shown instantaneously on the computer screen.
Kaput (1992) provides a detailed discussion of this “hot linking” and discusses other areas where
technology is providing interesting learning tasks that take account of advances in cognitive
psychology.

How can information such as the preceding be used by teachers in the classroom? As
mentioned previously, the theories are not directly translatable into classroom practice. However,
research has shown that sometimes making teachers aware of research finding not only affects their
practice but also student learning. The Cognitively Guided Instruction project (Carpenter,
Fennema, Peterson, Chiang, & Loef, 1989) is a good example of a research project that achieved
positive results by providing teachers with research information. We discuss this project in detail
in the next section. We conclude this section by hypothesizing that if teachers consider the
importance of students developing connections between ideas as they plan instructional activities,
then it may have a positive influence on what students learn and how they perform in the problem
solving domain. Further, if teachers reflect and use other ideas from cognitive psychology such as

research on representations of ideas, t':en positive outcomes may also follow. We now elaborate
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on the teacher’s role in improving problem solving learning in classroom situations.
Authentic Teaching

Dossey (1992) points out that there is not a common view among mathematicians of what
constitutes the nature of mathematics. Further, when mathematicians are confronted with
questions about the nature of mathematics they often revert to discussing it as meaningless game
played with symbols even though this view is not representative of what is happening when they
are creating mathematics. Despite the lack of consensus among mathematicians, Dossey makes a
strong case for reconceptualizing views of mathematics to consider it more a human activity that
involves exploration, guesses, representations, generalizations, and arguments that convince.

In the education community there is strong serntiment for considering mathematics as a sense-
making activity that is socially constructed and transmitted (Brown, Collins, & Duguid, 1989;
Lampert, 1990; Schoenfeld, 1989). If this view is accepted then it is clear that students develop
their sense of mathematics, and thus how they use mathematics, from their experiences with
mathematics. Most of this experience occurs in the classroom and thus the instruction that teachers
provide become crucial.

In too many classrooms, unfortunately, students’ mathematical experience involves nothing
more than doing endless sets of exercises where each exercise has one answer and there is one set
way of dcing each exercise in the set. Indeed, even problem-solving lessons designed to teach
strategies do not escape this pitfall; that is, many times there will be an assignment where every
task is designed to evoke a particular strategy, such as make a diagram or work backwards. This
type of instruction does not foster sense making but rather stifles thinking of any kind, especially
thinking that would be considered creative or novel. What is needed is teaching where the tasks
teachers set for students require problem solving, where problem solving includes substantial
mathematical thinking as previously discussed. In short, problem solving must become an

approach to instruction rather than a topic of instruction.
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What would a classroom in which the teacher is using a problem-solving approach to
instruction look like? Actually a better question would be to focus on some of the characteristics of
such instruction. Better because by its very nature we would expect classroom events in such an
approach to follow student thinking and, therefore, detailing a prescription for using such an
approach would be inappropriate. My view is that in a typical problem-solving approach to
instruction one would see lots of exploration of situations, hypothesis generation, problem posing,
multiple solutions and solution methods, arguments followed by justifications and verifications. In
fact, the classroom would have much in common with what mathematicians do when they do
mathematics (see Lampert, 1990 for further discussion of this position).

We conclude this section by discussing a research project, Cognitively Guided Instruction
(CGI), where teachers moved from a transmission model of instruction to one that was more
constructivist in nature (Carpenter et al., 1989). In this primary grade project, teachers were made
aware of research findings about the strategies children use in solving simple addition and
subtraction verbal problems but were not explicitly told how to use this information. They were
also shown examples of children solving problems and discussed the variety of solution methods
that naturally arise as children leamn to solve problems. The impact of providing this information
was substantial. Teaching behavior changed in the direction of spending more time on problem
solving and teachers spent significantly more time than control teachers discussing student solution
strategies as part of regular mathematics instruction. Student problem solving performance was
also positively impacted and there was no loss in the development of basic skills.

This study makes a strong case for sharing research knowledge with teachers, changing
teachers’ view of mathernatics, and the fact that if teachers create the right classroom environment
then progress can be made in the directions called for in the current reform movement. The culture

of the classroom is also an important component of change and is discussed in the next section.




Instructional Context

The least studied and understood factor associated with mathematics teaching and leaming is
the effect of context, yet it holds great potential for deepening our understanding of classroom
practice and for helping develop a framework for improving student leamning. I begin with a
general discussion of context and then give special attention to how context affects student beliefs
and behavior, how student beliefs may shape teacher behavior and development, how teacher
conceptions are complex in both their nature and how they affect classroom culture, and finally
examine a research study by Grouws (1991) that investigated teachers’ conceptions of problem
solving.

Context, the set of interrelated factors surrounding and often influencing a situation, has been
recognized and shown to be important in many social science fields with anthropology being the
discipline most often used to llustrate its value in interpreting events and behavior. Classroom
context consists of many variables.

Factors outside of the school are part of the schooling context if they are in some way
associated with student learning. One external factor that has shown considerable impact on the
schooling process is the influence of mandated assessments. State mandated assessments have
been found to influence the curriculum, how instructional time is used, and the nature of
instruction. Romberg, Zarinnia, & Williams (1989) in a nation-wide survey of eighth grade
teachers found that 70% of the teachers surveyed administered district-mandated tests to their
students. Fewer than 20% of the teachers made no instructional changes as a result of the test.
Romberg et al. summarized their findings about mandated tests by saying that almost all teachers
use the test results to evaluate themselves or their students, that the majority of teachers change
their use of instructional time based on the test results, and that nearly a third of teachers consider
the style and format of the test when planning their mathematics instruction. This study
demonstrates the power of context factors in shaping classroom instruction. It also speaks to the

development of problem solving ability because as Romberg et al. (1989) point out, “The tests do
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exert an influence, and that influence is an entrenching of the emphases on basic skills and pencil-
and-paper computation that the NCTM Standards recommends de-emphasizing.” (p. 83) Thus, a
strong argument can be made that changing the composition of required tests to include more
problem solving items may be a needed context reform in order for mathematics classrooms to
focus more on problem solving and developing mathematical thinking. The importance of context
factors outside the school building is not limited to mandated testing as will become clear in the
discussion of parental attitudes that follows.

Parental attitudes have been suggested as a major influence on how much mathematics
students learn. Research has shown the existence of not only important achievement differences
among American, Chinese, and Japanese students but also cultural differences that may contribute
to the differences in learning. Stevenson, Lee, & Stigler (1986) found, for example, that 91
percent of American mothers in their sample judged that the school their child attended was doing
an excellent or good job, while only 42 percent of Chinese mothers and 39 percent of Japanese
mothers were this positive. In another part of the study mothers were asked to rank the rejative
importance of effort, natural ability, difficulty of school work, and chance in determining a child’s
performance‘in school by allocating a total of 10 points among the four categories. Interestingly,
Japanese mothers assigned the most points to effort, and American mothers gave the largest
number of points to ability. Stevenson et al. (1986) concluded that “the willingness of Japanese
and Chinese children to work so hard in school may be due, in part, to the stronger belief on the
part of their mothers in the value of hard work.” (p. 697)

When context is considered with respect to schooling it also includes internal factors within
the school environment such as school goals, classroom climate, the physical setting including
availability of instructional equipment and materials, school policies ahd curriculum guides,
administrators, and teachers' colleagues to name a few of the factors.

While many context factors may be important in coming to a better understanding of the

teaching and learning of mathematics, determining the impact of any particular context factor in a
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school setting must involve more than logical analysis because in some situations what seems to be
intuitively obvious is not necessarily true when examined in the light of research. Consider the
often stated remark that administrators determine or strongly influence teaching practices in their
schools. On the surface it makes sense and in so1ne situations it may be quite true. Data from
research, however, suggests that it is not true in many instructional situations; that is. teacher
decision making at least in some domains may be quite independent of administrator influence.

For example, Goed, Grouws, & Mason (1990) surveyed 1509 teachers in elementary schools in
10 districts in three states about their grouping practices in mathematics. In their study the
influence of school principals was not a factor that many teachers reported as influencing their
decisions about whether or not to group students for instruction, when to group students, nor how
to form instructional groups if and when they used them. Thus, the study casts doubt on the
importance of some commonly cited context factors that purportedly influence teacher decisions
about instructional grouping. On the other hand, it lends support to the importance of other context
factors, such as time pressures, that do influence teacher decision making. Thus the study shows
the importance of some external context factors, but reminds us not to accept generalizations about
context without supporting research data.

We examine one more example of a commonly accepted generalization involving context that
has not withstood the test of research scrutiny to emphasize the importance of research in validating
the importance and contribution of context factors. There is a maxim that student teachers are
greatly influenced by the context in which they do their student teaching, more specifically, that
they are particularly influenced by the teachers in their school. However, in real school settings the
situation is not that unambiguous. Brown and Borko (1992) point out from their review of the
research literature, that when a student teacher is placed in a school where several teaching cultures
are present, then it is unlikely that the placement will have much of a socializing effect on the

student teacher.
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The preceding discussion emphasizes the need for research validation of proposals concerning
the importance of context factors in shaping the participants in the classroom (teacher and students)
and classroom activity. The reader should keep this need for validation in mind as the influence of

classroom culture is discussed in the section that follows.

CLASSROOM CULTURE

In this part, I make the case that a classroom culture develops through the interactions of the
teacher and the students. Thus, the views and expectations that téacher and students bring to the
situation affect the culture that forms. Then the development and influence of student beliefs in this
culture are examined. Next, how student beliefs can influence teachers is discussed. This is
followed by a look at how teacher conceptions influence classroom culture. Finally, because the
research base for many parts of the argument are not in place, I conclude the section by examining
a research study of teachers’ conceptions of problern solving because it shows important variance
that should be considered when studying classroom culture.
Characterizing the Term Classroom Culture

Each mathematics classroom assumes its own culture according to the unique knowledge,
beliefs, and values that the participants bring to the classroom (Nickson, 1992). The sfudents
bring views of what one does in a mathematics class, judgments about how good they are at
mathematics, and feeling about how well they like mathematics. The teacher brings to the class a
view of mathematics, routines for teaching the class, expectations about what should be
accomplished in the class, personal experience with learning mathematics, and either a like or
dislike for the discipline. The preceding lists are not meant to be exhaustive, but rather to be
suggestive. What teacher and students bring to the classroom situation has a role in the classroom
interaction that takes place, and thus plays a part in the classroom culture that emerges. It should
be clear at this point that no two classroom cultures will be exactly alike because they are composed
of different students and teachers. Thus, when one talks about what a classroom culture should be
like in order to promote learning, one is describing an idealized condition for purposes of
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communicating the desired characteristics of such a culture. I now discuss how student beliefs are
influenced and shaped by classroom culture, where you will recall classroom culture is taken to
include the shared meanings and beliefs that teacher and students bring to the classroom and that
govern their interaction in 1t.

Development and Influence of Student Beliefs

Three points form the basis for our discussion of student beliefs. First, student beliefs and
conceptions are influenced by classroom culture. Second, the beliefs and conceptions formed
shape how students learn and what is learned. Third, student beliefs and conceptions shape
teacher behavior.

We have already discussed one situation where classroom woik promoted a particular view of
mathematics. Recall the situation where the daily mathematics work was composed of doing
endless sets of routine exercises. I will not illustrate this situation further because, unfortunately,
most people have had direct experience with such classroorn situations or have at least had it
described to them. Such activity, day after day, undoubtedly has an influence on student thinking
about what mathematics is about. It seems logical that students would soon begin to think that
there is one way to do every mathematics task and that there is always one answer. In fact, there 1s
data to support the prevalence of such a conception. Data from the National Assessment of
Educational Progress (1983) indicate that 9 out of 10 students surveyed agreed with the statement,
“There is always a rule to follow in solving mathematics problems.” Interestingly, the survey also
found that over one-half of the students thought learning mathematics was mostly memorizing. It
seems logical to assume that the development of these beliefs about mathematics would develop, in
part, through the interactions between teacher and students in the ciassroom, that is, from the
culture of the classroom. We discuss how snecific teacher conceptions and actions can influence
classroom culture, and thus students, in more detail in a later section.

At this point it is appropriate to discuss how student beliefs and conceptions shape how

student learn, and what they learn, because we have just shown how classroom culture molds

85

104




student beliefs about mathematics. The case rests on suggesting that student beliefs about the
nature of mathematics affects how they approach learning and thus what is learned and how it is
learned. An illustration may clarify the argument. Consider a student who believes the following.
Mathematics is mainly memorizing. If one understands mathematics then one should be atle to do
problems quickly. There is always a rule to follow in solving mathematics problems. It is likely
that this student is attending to quite different things in instruction than a student who thinks of
mathematics as an activity that requises thinking, that problems frequently require large blocks of
time to solve, and that there are multiple ways to solve most problems. It is beyond the scope of
this paper to detail situations of how these students would differentially respond, but I think the
logic of the situation is sufficient that most would agree that it is at least plausible to assume that
they would respond differently. In closing, the reader should note that the first student described
is probably a fair representation of many students because it is based on responses to items found
in the National Assessment survey previously mentioned. Next we consider how student
conceptions can influence the teacher.
Influence of Student Beliefs and Conceptions on Teachers

The very idea that students beliefs and conceptions affect teachers and their teaching practice
may seem quite unbelievable to some people, particularly people who see the teacher as the
absolute ruler and authority in the classroom. It is quite clear, however, from the limited research
that bears on this issue that students acting out their beliefs and conceptions do have a shaping
influence on teachers.

Cooney (1985) studied a mathematics teacher during his preservice training and his first three
months of teaching. Through a series of interviews he determined the meanings :he teacher
“ascribed to problem solving and to teaching more generally,” and the teacher’s perceptions of how
implementation of his ideas played out in the classroom. The teacher believed strongly in the use
of problems to stimuiate student interest, particularly recreational problems. He further believed

that “problem solving is the essence of mathematics” and a “teacher’s chief responsibility is to
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motivate students.” Classroom observation showed that as the teacher moved to implement these
views, students in his algebra and geometry class were responsive, but he met with stiff resistance
from students in his other three classes (Algebra II, General Mathematics, Geometry). Cooney
characterized these unresponsive classes as lethargic and uninterested with several students in one
class so disruptive that it seemed difficult for the teacher to maintain any continuity. The teacher,
not unexpectedly, was frustrated by the situation and commented that “for all my efforts of
explanation and good pedagogical techniques, I still don’t know how to motivate students.”
Students were frustrated too. In one exchange where the teacher attempted to justify his inquiry
based approach, one student responded, “We are not used to that [kind of approach]. Itis a
different style of approach than anything we have seen before. We reject it as a kind of culture
shock.” This situation clearly illustrates how the interaction between instruction and classroom
culture can be problematic. For our purposes, it is important to note that the teacher in this study
eventually abandoned his inquiry-based approach to instruction and his use of recreational
problemns and changed to a more traditional form of instruction that focused on covering the
material.

It should be noted that while the impact of students on teacher beliefs about instruction, and
how it should be conducted, was quite direct in the preceding research, it is likely that much more
often the effects will be more subtle and the adjustments teachers make much less major. This
makes detecting such changes through research much more difficult, but in spite of this difficulty,
it is important that studies be conducted to better ground the idea that student beliefs, and their
resulting actions, do influence teachers and their instruction.

Teachers' Conceptions and Their Influence on Students

The Cooney (1985) study previously discussed shows that the relationship between observed
practice and teachers’ professed beliefs are complicated and complex. There are, however, studies
where there has been a close match between teachers’ beliefs about teaching and their instructional

practice (e.g., Grant, 1984). Thompson (1992) when discussing inconsistencies among studies
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makes a valid point when she indicates that

teachers’ conceptions of teaching and learning mathematics are not related in a

simple cause-and-effect way to their instructional practices. Instead, they suggest

a complex relationship, with many sources of influence at work; one such source

is the social context in which the mathematics teaching takes place, with all the

constraints it imposes and the opportunities if offers. (p. 138)
We have referred to some of these constraints that may cause teachers to circumvent
implemeatation of their conceptions and beliefs. One of these was the pronounced effect of
mandated testing on teacher planning and instruction. If one accepts that teachers concep’ions in
some cases directly affect instruction and in other cases the effect is mediated by context, then one
question that surfaces is what are teachers conceptions and beliefs. We now turn our attention to
one study of this situation which focused specifically on teachers’ problem solving beliefs and
conceptions.
Teachers' Conceptions of Problem Solving

As part of a larger study, Grouws (1991) examined teachers conceptions of problem solving.
Twenty-five teachers drawn from eight junior high schools in a large Midwestern school district
comprised the sample. This volunteer sample represented over 80 percent of the junior high
mathematics teachers in the district. Together they taught 119 classes composed of more than 2500
students. The SES level of the schools in the district ranged from lower-middle to upper-middle
class.

Using a pilot-tested set of questions, teachers were individually interviewed for approximately
50-55 minutes concerning their beliefs and teaching practices with special attention to problem
solving. At the beginning of the interview teachers were reminded that although problem solving
was important there was not a consensus about its meaning or how it should be taught. They were
asked to be candid in their responses and reminded that all data collected were confidential. Thc
discussions were audio-taped and later transcribed. The transcribed interviews were analyzed to

identify patterns of responses and to detect relationships among the responses.

To help determine the teachers' definitions of problem solving, they were asked to state in
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their own words how they would define the term. Careful assessment of their responses showed
they clustered into four distinct categories. Many of their responses clearly focused on types of
problems whereas others centered on features of the problem-solving process. Four
conceptualizations were identified: (1) Problem solving is word problems; (2) Problem solving is
finding the solutions to problems; (3) Preblem solving is practical problems; and (4) Problem
solving is solving thinking problems; that is, requires thinking. In summary, teachers' definitions
of problem solving could be categorized into four distinct classes, differentiated in three cases
primarily by the type of problem mentioned and in the other case by a focus on the level of thinking
required. Concerning problem types, some teachers classified problem solving as word problems.
A variety of word problems were included but most could be solved in a step-by-step manner or by
using a computational procedure. Another group defined problem solving to be those tasks that
involved problems of any type, with no differentiation of complexity. Others feit problems had to
be of a practical nature, applicable in the real world. The final group of teachers believed that
problem solving had to require the student to think and not just apply some practiced procedure to
find a solution. These findings clearly demonstrate that teachers do have different conceptions of
what constitutes problem solving. This is important because, as was shown previously, teacher
conceptions influence instruction, although the relationship is complex and mediated by the many
factors that cornprise classroom context. Nevertheless, the existence of different teacher
conceptions should be taken into account in planning new research and in interpreting the results of
existing research. For example, studies that report on the importance teachers ascribe to problem
solving need to consider what each teacher meant by the term problem solving in each item of the
instrument. This is especially true given the four different clusters of conceptions found for
problem solving in the research summarized here.

I close on a positive note by mentioning the work of Cobb and colleagues. They ha.. a
program of research at the primary grade levels that emphasizes the construction of meaning in the

experiences provided to children in mathematics class. Their instruction is inquiry-based and
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problem centered. Their program includes working with teachers and providing experiences to

assist them in reflecting on their conceptions of mathematics and what it means to teach
mathematics. The results have been positive in terms of the classroom culture that develops and in
terms of the resulting student learning. For a detailed description of the program see Wood, Cobb,

Yackel, & Dillon (1993).
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AN OVERVIEW ON MATHEMATICAL PROBLEM SOLVING IN CHINA

Dianzhou Zhang

East China Normal University

Introduction

Chinese mathematical education has absorbed the quintessence of thinking from Japan, the
United States and the Soviet Union in this century. Of course, China has its own tradition with
many good characteristics and also some weaknesses. Therefore, it is appropriate to view

mathematical problem solving in China both internationally and traditionally.

Historical Background

Mathematical problem solving is a most important characteristic of ancient Chinese
mathematics. For example, the famous classical work Nine Chapters of Arithmetic that was
completed in 200 B.C. consists only of 246 mathematical problems that were classified under nine
types. At the same time, ancient Chinese mathematicians believed that solving a real-world
mathematical problem or winning an intellectual game meant that one could find the answer by a
computation program. This attitude tended to encourage a fragmented learning of skill in problem
solving by separating problems into types, and particularly emphasizing the skill of quick and exact
computations. This is the reason why the Chinese called mathematics the "Suan Xue ( %% )"
that means "the knowledge of computation,” before World War 1I.

There exists an "examination culture" due to the traditional examination system in China. In
593 B.C., Sui Wen-Di, a Chinese King, selected some officers by using a nationwide
examination. Thus, everyone had the opportunity to become a junior officer if they passed the
nationwide mathematical examination. In 1888, 30 young men took part in an examination of
Western mathematics, but only one of them passed and became an officer. Thus, the idea of "a test

paper deciding one's future" and "the examination selects the elite only” has been a part of Chinese

culture.
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After 1900, Western mathematics was taught in all schools in China. However, the entrance
examination was still important in the educational system. Mathematical problem solving then
became almost equivalent to problem answering on examinations. In the earlier part of this
century, we learned a lot from Japanese mathematics educators. Nevertheless, both Japan and
China suffered from the pressure of keen entrance examinations (S. Shimada). Japanese
examination problem books had a great influence upon Chinese mathematical education in the
second half of this century. For instance, The Dictionary of Geometry and The Dictionary of
Algebra written by Nagasawa have been popular references for Chinese teachers.

The Chinese mathematical curriculum and textbooks were influenced by the Soviet Union
instead of the United States in the 1950s, so that the curriculum formed a rigorous, logical and
pure deductive system. As to problem solving, we emphasize the skill of quick and exact
computation and the rigor of deduction. In the meantime, we have neglected mathematical
applications and modeling as well as intuitive thinking, because problems of these types cannot be
used on the examinations.

When a Chinese delegation took part in the ICME-4 in 1980, we heard about a new
mathematics teaching approach--problem solving; however, this new slogan was immersed 12 &
tide of keen competition on the entrance examinations through the whole of the 1980s. Professor
J. Becker gave a talk about problem solving in Shanghai in 1987, and Professor T. Sawada
introduced the open-ended problem to us in Xian. These lectures and other work led to more

attention to problem solving, but it was not put on our agenda until the 1990s.

Two Champions
Chinese pupils have performed well in many international competitions and assessments.
There are two very important reports:
1. The Chinese team won first place in the International Mathematics Olympiads that were
held in 1988, 1990, 1992 and 1993, respectively.
2. The International Assessment of Educational Progress (IAEP) published statistical data in
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1992. In mathematical testing, the average percent correct of Chinese pupils was also

listed in first place among the 21 countries and areas. Here is an incomplete listing:

China (Mainiand) 80 Korea 73
Chinga (Taiwan) 73 Switzerland 71
Soviet Union 70 France 64
Canada 62 United States 55
Spain 55 Brazil 37

These data may show that Chinese students can do the best in a timed written examination.
Someone said that China seems to be a realm of routine problem solving. However, it is clear that
Chinese mathematics teaching has its own weakness; for example, neglecting to cuitivate students’

creative abilities and paying less attention to mathematical applications.

Double-edged Sword--Keen Examination
As I mentioned above, there exists an "examination culture" in China. Obviously, it is
impossible to abrogate the system and suspend the culture for a moment. In addition, the intense
emphasis on the entrance examinations simultaneously plays both positive and negative roles.
On the positive side, the system
* encourages fair competition;
* compares achievement under one national standard;
* calls parents' attention to the mathematical performance of their children; and
* requires the students to solve examination problems quickly and exactly (as a result,
mathematics teaching must emphasize basic mathematical skills).
On the negative side, the system
* places great pressure on the pupils;
* forces teachers to teach only what the examination demands;
* emphasizes memorization and programmed thinking in order to only answer the test
questions.
In order to generalize the mathematical problem solving approach, we must make use of the
positive functions of examinations; in particular, to reinforce basic mathematical skills. Chinese
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teachers believe that every pupil should solve a great number of routine problems--"Practice Makes
Perfect." They used to say "We should treasure our childhood practices” (language practice,

practice playing the piano, etc.), of course, including practice in mathematics.

Recent Progress

Accompanying the nine-year compulsory education requirement that is being carried out, most
Chinese mathematics educators suggest that we replace "testing mathematics education” by
"essential mathematics education;” i.e., to emphasize "mathematics for all" instead of "mathematics
for some" (those who pass the entrance examination). However, a lot of teachers worry that
pupils' skills will decline by reducing the amount of exercise. Of course, doing exercises to
improve skills is very important, but alone it 1s by no means satisfactory. We must set a higher
educational goal: from “exercise doing" to "problem solving." Since 1992, we are striving
towards this goal and undertaking the fuiiowing three things:

1. Innovation in Examination Problem

Examination problems, as a powerful influence, are able to guide mathematics teaching along
a path of progress; but, of course, they can also guide it in a wrong direction. Thus, innovation in
the mathematics problems of the entrance examinations is being promoted as an important way to
emphasize mathematical problem solving. As the first step, the Education Committee of the
Chinese Mathematical Society suggested to the National Examination Center that it add some
problems of mathematical applications to the examination papers of the University and College
Entrance Examination in 1993. Four applied mathematical problems were included on the
exarnination this year. This measure has prompted school teaciiers to pay more attention to
mathematical applications problems and modeling. (In the past ten years, no applied mathematics
problems appeared on the National Examinations.)

2. Publishing a new School Mathematical Problem Book.

Chinese school teachers are used to solving routine problems; however, they don't know
what a "mati;ematics problem" is. Routine problems are problems, and we do not intend to
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weaken the pupils’ basic skills on routine problem solving. But, what we need to do is providé a
number of valuable mathematics problems for use by school teachers. For this reason. the
Research Center for Basic Education of the State Commission of Education entrusted us with the
compilation of a mathematical problem book.

The Study Group For Mathematics Education completed the first book, School Mathematical
Problem Book (1), that includes 168 problems in which Chinese teachers may be interested. Sume
of them were sclected from abroad and some were developed by us. We selected problems
according to three guidelines:

(1) Challenging--different from routine problems;
(2) Close to the syllabus and the requirement of the examinations--different from pure
intellectual games and puzzles;
(3) Easy to undertake--different from the Olympiad Competition Questions.
(consult appendix for examples)
3. Qrganizing a Nationwide Seminar
Ini order to draw attention to the mathematical problem solving teaching approach, a
nationwide seminar sponsored by the Research Center for Basic Education and the National
Examination Center was held in August this year. A series of seminars are also being planned.

In the August seminar, we presented the 168 mathematical problems that are mentioned above
to all participants and reported some experiences with problem solving teaching. However, the
focus of the discussion was still on the relationship between the entrance examinations and
problem solving:

(1) How can students’ creative power and abilities in mathematical applications be
assessed by a timed, written examination?

(2) Since solving an applied mathematical problem may require knowledge beyond
mathematics, how can we evaluate students' mathematical abilities by these

problems?
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(3) Open-ended problems are very valuable; however, can they be put into an
examination paper? Many teachers worry that we cannot evaluate solutiops in a fair
way due to a lack of standard answers for the open-ended problems.

(4) Bloom's theory of classification of the aims of teaching is very popular in China. If
we were guided by Bloom's theory, then test papers would mostly cover the
"knowledge domain," but then maybe there will be too much time on routine
problem solving. Is Bloom's theory right or not?

(5) There are several papers reporting investigations on hov: pupils' abilities on routine
problem solving transfers to general problem solving. ‘¥e expect to bridge the

psychological mechanism of this transition.

The theoretical investigation and classroom practice of problem solving were initiated in China
only a few years ago, though we have more experience with routine problem solving. We need to
learn a lot from our American and Japanese colleagues, to exchange ideas and information on

problem solving, and to finally raise the general level of mathematical education in China.

APPENDIX

We collected 168 mathematical problems for the School Mathematical Problem Book. Here
are some examples which may be of interest to Chinese teachers.
1. Nine robots are to perform various tasks at fixed positions along an assembly line. Each
must obtain parts from a single supply bin to be located at some point along the line.
Where should the bin be located so that the total distance traveled by all the robots is
minimal?
(This problem is selected from the Curriculum and Evaluation Stendards for School

Mathematics (NCTM). It has many reasoning features that arz appreciated by
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Chinese teachers).

2. There is a rectangular field. We will design a small garden so that the area of the garden is
equal to half the area of the field. Please give your design.
(This open-ended problem was provided by a participant in PME-17 which was held in

Japan in August 1993. Chinese teachers show a special interest in it.)

3. A cube with six red faces will be divided into #3 small equivalent cubes. How many
small cubes will have three red faces, two red faces, one red face and no red face?
(We think this problem is not only an intellectual game, but is also concerned with

algebraic expressions:

nd =[-2)+23 =(n-23+3-2- (23 +3 -4 (n-2) + 8.
Chinese teachers like problems like this that are also concerned with computation skill.)
4. There is a hexahedral pavilion, whose two neighboring pillars are a distance 1.6 m. apart.
and each pillar is 2.7 m. in height. The distance between the top point A of the pavilion
and the ground is 3.9 m. Please find the plane angle between two neighboring triangles

on the roof of the pavilion.

(This is an ethnomathematics problem concerned with a Chinese style of construction.)

1AL

100

b




hall L UL

I ERIERT .00 .l

S.

On the world map, Shanghai is near point A (with east longitude {20 and north latitude
60) and Los Angeles is near point B (with west longitude 120 and north latitude 60).
Please find the length of arc AB on the large circle OAB and on the north latitude 60 circle
O’'AB, respectively.

(This problem is rewritten from news about an air accident in 1993.)

answ Alaska

—
- \

P \ >
/ f a
/ N C
v
< ez

.5’1;;“]'[,:,,‘ - AER

101




DIVERSITY, TOOLS AND NEW APPROACHES TO TEACHING
FUNCTIONS?2

Jere Confrey

Cornell University

Concerning educating, Ubi D' Ambrosio speaks of the fundamental importance of learning to
respect the diversity of others. This conference, the China-Japan-U. S. Seminar on Problem
Solving, that is attended by delegations from three different cultures, provides a unique
opportunity to explore what it could mean to respect and learn from diversity in mathematics
education. One component of respecting diversity is to be humble enough to realize that
recognizing and understanding another's diversity, their differences from ourselves, is a difficult,
albeit exciting, challenge. This applies equally to understanding children as to understanding those
of different cultures, classes, races, genders or sexual preferences. Respecting diversity begins as
we forego the arrogance implicit in believing that we possess universal insight. Since, in
mathematics, claims of universality in our thinking arise frequently, overcoming arrogance is a
serious issue for mathematicians and for mathematics educators. In this paper, I seek to establish
the issue of diversity as a fundamental one, not only among the communities of learners of
mathematics, but in the discussions of the epistemology of mathematics itself. I will make the
argument that the suppression of diversity in the content of mathematics implicates the lack of
diversity in the practice of doing mathematics since the two, practice and epistemology, are not
separable. This argument will be made in the context of research on students' conceptions of
functions.

The Gitksan Indians speak of male and female as two wings of a bird and remind us that a
bird could not fly without both wings (Plant, 1989). Much of this paper is about reestablishing

balance in mathematics education by creating stronger dialectics rather than by resorting to bipolar

2 This paper is dedicated to the memory of Florence Velez, my first doctoral student who was investigating
trigonometric functions within a Vygotskian perspective at the time of her death well before the rest of us anticipated the
importance of such approaches.
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opposition and hierarchical ordering. Dialectics make it clear that diversity only makes sense in
light of commonalty and visa versa. For example, protecting biodiversity only makes sense in
light of our shared eco-sphere. Recognizing our shared humanity is made far more likely once
group and individual differences are acknowledged. Our frameworks for educating must find
better ways to admit various viewpoints, competing or contrasting, without dismissing or failing
to acknowledge our shared interests. Perhaps, the recognition of commonalty rather than a claim
for universality will lead more effectively towards a non-arrogant approach to knowledge and
foster mutual respect among the participants.

Epistemologically in mathematics, I make a parallel argument concerning the need for more
attention to dialectics, such as the one between generalization and distinction. Using the treatment
of functions as a case study, I seek to demonstrate that mathematics has over-stressed
generalization to the detriment of distinction and difference. As a result, a public perception is that
mathematics is a set of generalizations, axioms and subsequent theorems, whose generalizability is
their defining quality. The discipline thus ioses the recognition that contrast to the particular case is
essential for an appreciation of the generalization. What is sought is the grandest generalization,
the one least tainted by individual difference, and what emerges is a view of abstraction that heralds
decontextualization and symbolic sterility, rather than a view of abstraction that recognizes the
complexity in moving between the particular and the general to produce conceptual understanding.
Along these lines, I will suggest that it is reflective abstraction, as a means of reflecting on the
previous accomplishment and creating a genetic epistemological trail, that is the hallmark of
knowing. It entails a synthesis of the evorution of the concept, including both distinction and
generalization, and recognizing with each a loss and a gain. The knowledge we must seek is that
which creates a lens for us to make sense of experience, not that which creates objects we can place
on shelves in our mind's storeroom.

In juxtaposing a discussion of diversity and commonalty and a discussion of distinction and

generalization, I am suggesting that there is a link between the elitism so evident in the practice of
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doing mathematics in the academy and the epistemology we legitimate in the portrayal of
mathematics in teaching and learning. Inequality results from the suppression of legitimately viable
diversity. Because this suppression is practiced regularly in our instructional practices, from
kindergarten through post-secondary education in mathematics instruction, it is no wonder that
these practices accumulate to act as a filter to participation in higher matirematics.

This, of course, begs the question of what is “legitimately viable diversity", and who
determines this? I choose to respond to this question by providing an example of an exploration of
functions which demonstrates a number of epistemological innovations demonstrated to us by our
students, or found in the historical record. They are not typically a part of current curricula. These
ideas will be very simple and accessible and will invite entry into important mathematics. So, the
question is why are they not used in instruction? Perhaps it is due to a narrow view of
mathematics, one which neglects context and privileges certain symbolically less accessible forms
of representation. And, I will argue that in order to challenge this portrayal of mathematics,
alternative frameworks need articulation; ones which are more democratic. In doing so, I will
challenge current assumptions about abstraction and the role of concrete materials, and offer in its
place an alternative theoretical description. As a result of this analysis, I will argue for the

importance of a much more vigorous reform agenda at the secondary and post-secondary level.

The Context

In this paper, an example based on research on students' conceptions of functions is offered.
The example will be cast within the use of a piece of software developed by my research group
called Function Probe© and a problem from Learning about Functions Through Problem Solving 3
The research on which the paper is based includes the design of the software since 1986, the use of
the software in precalculus courses at Cornell University since 1990 (n = 150-200 per semester), a
year-long study in a high school class in the Apple Classroom of Tomorrow in Columbus, three

studies at the Alternative Community School in Ithaca and six doctoral dissertations (Rizzuti, 1991,

3 This is available from Intellimation, Department Y4, 124 Cremora Drive, P.O. Box 1530, Santa Barbara, CA
93116-1530 1-800-346-8355.
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Afamasaga-Fuata'i, 1992; Borba, 1993; Smith, 1993; Piliero, 1994; and Doerr, 1994).

In the history of mathematics, one sees two contrasting approaches to algebra which meet at
the invention of calculus. They could be described as the algebra of change and the algebra of
structure. The algebra of change was concemed with how to describe change as scientific
enterprises entered the mainstream of mathematical thought. Describing motion is one example of
this, and in it, variable is a description of variation. The algebra of structure , was more concerned
with the solution to equations, the coding of arithmetic operations into generalizations with
unknowns and the developrient of forms that led to solution types. This seems to be an older
mathematics, with its roots in Indian and mid-Eastern civilizations. Its ties to arithmetic were
strong and the variable was an unknown. Bo}h developments of algebra had close connections to
geometry. Our research group has been focusing on the algebra of change since my dissertation
work on the history of calculus (Confrey, 1980) and incorporating in that study increasing referrals
to geometric reasoning. Since the algebra of structure dominates in the schools in the United
States, we have been challenging the emphasis on the manipulation of equations as the core of the
secondary curriculum.

Our theoretical approach to functions involves four components: the use of contextual
problems, the use of prototypical functions within functional families, muitiple representations and
transformations (Confrey & Smith, 1991). It should be stressed that the assumption we make is
that tools mediate knowledge, and so, the tools one uses to explore this theoretical context have a
significant impact on what is learned and is legitimated as knowledge. As a mediational influence,
it is also the case that what is learned further influences one's use of the tool. Thus, some
experience with the software would assist one in understanding the points in the paper. Since that

isn't always possible, a frequent use of figures will be included.

The Example: A Ferris Wheel and the Trigcnometric Functions
The conventional approach to functions in the United States defines a function as "a relation
such that for each element of the domain, there is exactly one element of the range.” For instance,
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fix) = sinfx) is typically introduced using the unit circle with a radius o one and a center on the
Cartesian plane at (0,0). The sin(x) is defined as the function that maps the distance around the
circumference of the circle from the point (1,0) in radians onto a vertical height off the axes, y, a
magnitude.4 Some prerequisite knowledge of right triangle trigonometry in defining sin as the
ratio of the side opposite over the hypotenuse is assumed.

The conceptual hurdles implicit in this approach include students must be able to go from the
unit circle where (x, y) represent the coordinates of points on the unit circle, to representing &
function, (x, fx)) where x is an input in radians and y is the same series of values as before, but
now is related to the input of radians. Secondly, students must go from being able to calculate the
: sin{x) for special triangles (30-60-90) and the (45-45-90) to be able to imagine the sin(x) for all
i values [this is a transition from a point-wise to an across time view of functions, (Monk, 1989)].
| Thirdly, using this approach, it is difficult for students to "see" the rate of change of the

- trigonometric functions, and as a result they tend to expect it to be linear (or proportional to the size
of the angle as described between 0 and 90). Finally, this approach does not really encourage
students to see sin(x) and cos(x) as tools for analyziug circular motion into its vertical and
horizontal components.

An alternative approach which we find leads to better student invention and comprehension is
to present the student with a problem which draws on their experiences and "creates the need" for
| the idea (Confrey, 1993b, 1994a). The problem we use is widely available and reads as follows:
Imagine you are riding on a Ferris Wheel that is 20 meters in diameter. At its lowest point, it
is 2 meters off the ground. The Ferris Whee! inakes one revolution every 24 seconds. You board
the Ferris Wheel at the level of its hub or center and begin your trip traveling upwards. Your goal
1s to represent your height off the ground as funcdon ot time in several of the representations

available on Function Probe®© (See Figure 1).

4 Euler introduced radians to link rigonometric and exponential functions into a single family via the complex
numbers(Euler, 1988). Since modern tools and textbooks use radians as the inputs to the sin function we are forced to
introduce this symbolism prematurely and it is poorly understood by teachers and students alike.
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Figure 1. The Ferris wheel

I will describe a typical scenario of actions taken by a student who has been working with
Function Probe for about two months. In the scenario that I will describe, the student enters the
study of trigonometric functions having studied right triangle trigonometry, and having used the
software to study linear, absolute value, greatest integer, and quadratic functions. She used
graphs, tables, equations and a calculator and has seen how transformations can be applied as: 1)
horizontal and vertical translations, 2) horizontal and vertical stretches (dilations); and 3) horizontal
and vertical reflections and reflections about x = y to build inverses.

A typical student will begin the Ferris wheel problem by putting in the values of the cardinal
cases. In doing so, they will build the following initial table (See Table 1). They will easily figure
out how to segment the 24 second cycle. It is possible that some of them will generalize to say that

G=H+ 12
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time (seconds) |angle (degrees)| height off hub | height off
(meters) qround (m.)

0.00 0.00 0.00 12.00
6.00 90.00 10.00 22.00
12.00 180.00 0.00 12.00
18.00 270.00 -10.00 2.00

24.00 360.00 0.00 12.60

Table 1. Initial table entries

Now, in order to help the students consider how to interpolate in the table, we asked them the
question, "how might you empirically investigate how the height off the ground changes as a
function of time?" To do this, we advocate for having the resources available for students to bu;’7
or investigate the following device pictured in Figure 2. Consider the outer rim and the movement
of a flashlight mounted on it. The flashlight is hung from a point on the rim of the circle such that
the flashlight remains hosizontal as the wheel turns. The wheel is rotated by a motor and moves at
a constant speed. The flashlight projects an image on a vertical screen. Students watching this can
explore the motion and rate of change of the beam. Two interesting things can be witnessed
relatively easy. The flashlight beam does not move up and down at a constant speed, but appears
to remain longer at the ends of the paths and to move quickly through the center. And if the beam
has any diffusion of its light, the circumference of the projected light also varies from broad to
narrow. It too can be seen to stay longer at the broadest and narrowest periods and to move

quickly through the intermediate stages.
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flashlights

Screen

square track

Figure 2.  Diagram of a dual mechanical device for displaying motion on a screen: A
wheel and a square track

This device allows students to relate what they see to their own experiences riding a Ferris
wheel. They report apparently contradictory experiences; the Ferris wheel, they claim, moves at a
constant rate. Yet the Ferris wheel feels faster and slower at different times. Is this just drama?
Or, is it possible that they are feeling multiple rates: the rate of circular motion which is constant,
the rate of motion forward and backward, and the rate of motion relative to the ground; note the the
last two vary. The ground comes closer and goes away faster as the Ferris wheel passes through
the height of the hub off the ground; the height relative to the ground changes most slowly at the
bottom and the top. When going over the top, one can feel as if one wili be flung forward out of
one's chair. Is this experience mirrored when passing through the bottom?

It is my contention that such design-related, grounded activities are essential for students at all
levels of mathematics. People erroneously believe that "manipulatives" are for children and that
experts need only to think "abstractly.” I will discuss the issue more extensively in the last section
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of the paper, but consider the following "variations" on the Ferris wheel as a device. Could you
design a device that would move up and down proportionately to the time, but which was not
simply a flashlight moving up and down a vertical shaft? These devices would produce heights off
the ground that were proportionate to the constant rate of movement along the shape. Movement
around the inscribed square on Figure 2 via a track achieves such a goal. Having students
experience its contrast to the circular motion is a fruitful activity. Is this the same as saying that the
height on the curve is proportional to its corresponding angle? If the answer is no, could one
produce a shape who height was proportional to the angle?

Questions such as these are generated by the use of motion and curve making devices.
Historically such devices were critical in the development of the algebraic representation of curves,
their rates of change, and the notion of function. They forged a critical link between geometry and
algebra, one that the development of algebraic notation in functional form (i.e., Ax) = ...) is
suppressing. Interesting enough, it was the study of these forms that led Descartes to create
algebraic geometry. To demonstrate the suppression of diversity that has occurred over history,
one need only consider that the Cartesian plane with its perpendicular axes was not always used by
Descartes. The selection of axes was made to allow him to investigate a curve and he would freely
use skewed axes. In such a case, it was similarity relations rather than the Pythagorean theorem
that became his intellectual tool. Drawing devices produced, however, equations that were not
easily solved for y (therefore not put into f{x) form) and also not easily classified into our current
set of families. However, in its relationships between mechanical linkages and windings and
geometric analysis, we have a rich historical source that has been lost to mathematicians and
students alike. See Dennis & Confrey (1994); Dennis, Smith & Confrey (1992); and Dennis (in

progress) for further discussions.
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time(seconds) |angle (degrees) iheight off the hub |} height off ground
exia (m) (m)

0.00 0] 0.0000 12.00
2.00 30 5.0000 17.00
3.00 45 7.0711 15.07
4.00 60 8.6603 20.66
6.00 S0 10.0000 22.00
8.00 120 8.6603 20.66
9.00 135 7.0711 19.07
10.00 150 5.0000 17.00
12.00 180 -0.0000 12.00
14.00 210 -5.0000 7.00
15.00 225 -7.0711 493
16.00 240 -8.6603 3.34
18.00 270 -10.0000 2.00
20.00 300 -8.6603 3.34
21.00f - 315 -7.0711 493
22.00 330 -5.0000 7.00
24.00 360 0.0000 12.00

Table 2. Ferris wheel data for familiar angular values

Returning to the original problem, the student fills in the triangles she knows from right
triangle trigonometry (see Table 2). She experiences difficuity going from degrees, which she
knows from the angles in triangle trigonometry, to radians, her normed measure of arclength.
Again she is faced with the question of proportionality, is the change in angles proportional to the
changes in arclength in radians? She wants to answer yes, but is uncertain having mis-predicted
proportionality to exist in relation to height and angle. She tries two approaches. She opens a new
graph window and puts the following values in the table (see Figure 3). She gets a straight line
with a constant slope and an equation of r = (21/360) a, where r is radians and a is the angle.
Now, confident of the proportionality, she proceeds to the calculator to build a button. She, first

thinks of how to change 360 into 2. This is done by dividing by 360 and multiplying by 2.
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Changing the input to 90, she reasons that since she needs 1/4 of 21 to get her desired value, she
should divide 90 by 3u0. She then builds a button in Function Probe called j1 that is defined as

7/360 * 2r = . This button will change her degrees column into radians5

(d,r)={.. (360.00, 6.28 ) ) 3@ (L
g d r
. degrees radians

y=| 0.00 0.00
UE 90.00 1.57
\ . 180.00 3.14
5 270.00| 4.71

360.00 6.28

L L T B T T
50 100 150 200 250 300 150

H1===== Calculator =—=-
[ E&d 3 =Z1
L1 z] ] ][]
] [a] (57 Ced ]
te ) L] 2] [3]

©@-:360%(2%7)=

(] o Jl.1

360+ 360*(2*7)=|6.283185
90+ 360*(2%7 )= (1570796
Figure 3

5 It is also possible in Function Probe to use a version of the sin function that takes degrees as its input. In the
calculator, the buttons for sin(x) have a subscript of d or r (sing x orsin x) indicating that they can take degrees or radians
as input. To use these in the other windows, however, one has to build a button of the form jn, and then it can be called |
inputting jn(x). We would suggest that such resources are an example of supporting student diversity and not very differe:
from allowing different bases for logs. In fact, the calculator in Function Probe also supports any base for logs making it
two valued function and not limited to natural (base €) and common (base 10) logs.
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She is then questioned about how to demonstrate the changes in the rate of change that she
saw in the device by appealing to her data values in the table. Her goal at this point is also to find
an equation to describe the height as a function of time so that she can extend her table to account
for any time period she wishes. Seeing the changing rate is difficult in the table for the intervals of
time are not equally spaced. She sends the data points to the graph to give her a first look. The
shape of the graph convinces her that there is a varying rate, for she has studied linear functions
and sees a difference between a line and the sawtooth curve that would have resulted if her “:.

prediction was correct; the height was proportional to time during each six second interval.

3) y=10sin(x)+12 4) y=10sin(x/3.82)+12
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g = 10sin(«/3.82)+12
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1) y=sin(x) 2) y=10sin(x)

Figure 4

She now wants to tackle the problem of finding the equation so that she can generate y values

for equal intervals on x. She recognizes the underlying prototype as y = sin(x). Since she is
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experienced in Function Probe, she decides to use a combination of visual and analytic approaches
(See Figure 4). As with most students, she tends to see the amplitude as the easiest to understand
and quickly inputs y = 10 sin(x). She knows she could have done this using the vertical stretch
tool, by leaving the anchor line (the line of invariance) at y = 0 and stretching by 10, but she no
longer needs to do it through graph manipulations and finds entering the equation to be a step
towards meeting her goal. With some hesitation, she decides to translate the graph up by 12. This
time she uses the translation tools so she can monitor the changes. Her attention is on the axis that
horizontally divides the sin curve into two parts and changing it to a representation of the ground's
distance from the curve. Now she faces the most challenging part of the problem for her, how to
adjust the graph horizontally. She sees that her graph has a period of 2t and she wants a period of
24 seconds. She decides on a horizontal stretch since she wants the graph to have a longer period.
She places her anchor line at x = O since her graph of y = 10 sin x + 12 and the desired graph share
a point there and she wants that link between the graphs to remain invariant. She knows that she
doesn't understand horizontal stretches as well, so she works empirically and visually now, aiming
for some further information that can help her reason about the equation.

When she stretches it, she gets the following equation: y = 10 sin (x/3.82) + 12. She knows
that it is a decimal approximation, but she hopes it can help her to figure out a i ~re precise
description. She recalls that pi is likely to be involved since she usually graphs trigonometric
functions on a scale marked with pi. She also knows from her work with the greatest integer
function that y = floor(3x) produces steps of length 1/3 and y = floor(x/3) produces steps of length
3. So she reasons if she wants a longer period, she ought to divide by the desired factor. She
opens a new window to check this conjecture and plots y = sin 2x and its got a shorter period. She
checks y = sin x/2 and it has a longer period, that of 4. She reasons that she wants a factor to
divide by that changes her period from 27 to 24. So, she calculates what she gets by dividing 1 by
21 and multiplying by 24. This corresponds approximately to her stretch factor and she quickly

inputs the equation and holds her breath until it passes through the desired set of points. She sighs
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in relief.6

The last question she has not yet resolved is how to demonstrate analytically that there s a
changing rate of change. What's caused her problems is that the intervals for the time are uneven,
so she can't calculate the rate over the same-sized intervals. She recognizes two choices, to go to
the table and make two new columns, inputting her newly found equation, or to sample points
from the graph. She chooses the first. From earlier in the course, she remembers that she used the
difference command extensively to examine the rate of change of the quadratic and leamed it
produces an arithmetic sequence and a second application of it produces a constant difference. She
uses the difference command on her trigonometric function, but all that is produced is another
confusing set of values. She decides to send this to another graph just to see what it produces, but
AG is between values, and cannot be plotted opposite t which she wants to use as her input. She
goes to the table menu and nudges the column up putting the values directly opposite the starting
values. She remembers doing this with the quadratic, but at this point she's not really sure of the
argument for it. She sends it to her new graph window and sees something that looks roughly like

another sin curve translated horizontally (Figure 53).

6 A second approach to this problem involves the use of the sampling tool. If she samples y = 10sin x +12 befere
the horizontal stretch in intervals of 1 and then stetches that sample and sends it to the graph, she will see that the
same set of y values which haven't changed but the x values will now have intervals of 3.82. 1/3.82 = .26 whicf: ss
her coeficient of horizontal stretch on her register.
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Tt d H ~ G=H+12 w=46
time(seconds) |angie (degrees) |height off the hub | height off ground
axis (m) (m)
0.00 0 0.0000 12.00 5.00
2.00 30 50000 17.00 2.07
3.00 45 7.071 19.07 1.59
400 60 8.6603 20.66 1.34
6.00 90 10.0000 22.00 -1.34
8.00 120 . 8.6603 20.66 ~1.59
$.00 135 7.0711 19.07 -2.07
10.00 150 5.0000 17.00 ~-5.00
12.00 180 -0.0000 12.00 -5.00
14.00 210 -5.0000 7.00 -2.07
15.00 225 ~7.0711 493 -1.59

Figure 5

At this point, class discussion ensues and the scenario ends. In the next section of the paper I
take one step back from the example and discuss how the use of context and multiple forms of
representation enrich and broaden the conceptualization of "function” and how this, therefore, is an
illustration of what I meant by the admission of "legitimately diverse points of view." In the final
section of the paper I discuss how the dominant conception of academnic mathematics inhibits
reform due to its neglect of the role of context and tools and its narrow conception of abstraction. I
offer, as well, the outlines of an alternative approach that can more effectively support reform at the

secondary level and increase diversity in the participation in mathematics.
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RETHINKING FUNCTIONS IN LIGHT OF STUDENTS' CONCEPTIONS AND
HISTORICAL EVIDENCE OF DIVERSE APPROACHES

A question that arises from the research is what happens to the meaning of the term function
when placed into a theoretical framework involving contexts, tools and the use of multiple
representations. 1 would claim that a number of epistemological changes become necessary.

Changes Resulting from the Inclusion of Context. The use of the term, relation, in the
definition of function needs examination. This term is really the heart of the definition, and one
might notice that students are never asked to define a relation. Relation is treated as a kind of a
priori term. A relation is, however, a built construct. Contexts can be useful in establishing a
belief, a conviction on the part of students, that there is an underlying invariance that can be
expressed, that a relation exists. For example, in the Ferris Wheel problem, the context gives
meaning to the idea of periodicity quite quickly. The idea that the range is bounded between 0 and
22 meters is also discerned as part of the meaning of the term "relation." And, finally, establishing
that for any point in time, an exact height off the ground can be calculated, and that the height will
reflect the varying rate of change witnessed using the Ferris Wheel evolves from the context.

Contexts can also provide students with an experience of the action that creates the need for
the application of mathematizing. The involvement of students in actions which are later
transformed into mathematical operations, magnitudes and variables expresses a way in which
context need not imply the use of everyday events and objects. Rather, context can imply students'
engagement in activity that involves action and sensory experience. In our research, we have
found that direct experience with balancing, bouncing, rotating, accelerating, or dropping is critical
in establishing an effective use of context. Rate of change becomes particularly salient through
context in that it is often felt in the action that is later "captured” by the function. In most of our
research to date, we have relied on word problems, like the Ferris wheel to provide the context.
More recently we have been experimenting with 1) curve drawing devices (Dennis, in progress); 2)
demonstration devices (the Ferris wheel); 3) geometric constructions; 4) design projects; and 5)

motion and other sensory detectors.
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Contexts also add another dimension. Contexts balance the gereralizations sought after in
abstractions with the distinctions that enrich contexts. For example, although the general form y =
AfiBx+C) + D provides view of transformations that can be applied across the families of

functions, it is the contexts that really assist in helping students understand why in a quadratic

function a horizontal stretch factor (1/b) can be accomplished with a vertical stretch of b2, or why
in an exponential function, a vertical stretch is "equivalent" to a horizontal translation. In the Ferris
Wheel problem, many students seem to see the vertical transformations of stretch, reflection and
translations, as actions on fitting the sin function, and then see the horizontal actions as "changes in
the scale on the x axis." I would suggest that context is a very useful aid in understanding the
importance of these distinctions. Furthermore, I find that the students reason analogically
comparing and contrasting contexts, and using problem nanes to describe and contrast new
situations. This suggests that contexts allow the students to make better connections among the
functional families

Changes from the Uses of Multiple Representations. There is much support in the literature
for the use of multiple forms of representations (NCTM, 1989). Multiple representations are
argued for the on the grounds that they allow for diverse approaches, provide students contrasting
insights, and rely on different sensory impressions (Rubin, 1990). Our experience has been,
however, that two critical issues are under-emphasized in the use of multiple representations First,
the use of each individual representation needs to be rethought in light of the new tools and student
conceptions. If one views the ultimate goal to be the presentation of the equation, the table or
graph become secondary means to that end. Their individual integrity will remain underdeveloped
and unexplored. In contrast, in a robust "epistemology of multiple representations" the difference
between representations and their unique contributions will be recognized and strengthened. Each
representation will be viewed as providing gains and losses of insight. This is a more fruitful way
of working with multiple representations than to view them as contributing to the ascension
towards one all-encompassing form, such as an equation.

Finally, when viewed this way, what becomes particularly important is the development of the
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story that weaves their uses together. In the software, Function Probe, a history is kept of the
students' approaches. Recently, we have added a resource, Function Probe Recorder, which in
addition to keeping a history of the use of the representations, allows students to capture a picture
of any window at any point in time and to make a note about the process of problem solving
(Haarer, in progress). By providing this resource, students have been able to share their different
approaches productively and distinction as well as generalization is valued.

Each representation in Function Probe offers different insights on functions.

Table Relations: The use of the table in exploring functions has been of major importance in
our research. Tables provide an entry to mathematical problems for many students. Data can be
imported from physical tools or simulations or can be reasoned out by the students in relation to the
context. Contrary to what is often described, I have found that students tend to select numeric
values and formats and that this process is often invaluable in helping them to define the variables.
Number patterns also help them to create operational connections. In our table, we have designed
it specifically to promote the development of functions and as such it is the column rather than the
cell that is the basic element. This differs from a spreadsheet. In building for column structure,
the resources to explore rate of change (delta and ratio commands) support key insights into what it
means to be a member of a functional family. Allowing for accumulation of a column provides
precursors to integration ,just as rate of change promotes the transition to the derivative. This
transition is strengthened by the ability to nudge a column up or down to allow students to treat an
average sum or velocity as corresponding to a particular value in the #omain. Interpolation is a key
issue in the table in moving from the discrete to the continuous case and we allow a variety of ways
to insert values. Finally, we built "link columns," so that two columns could be treated as related
and then sorting or inserting values can be done on both at once. If two columns are linked
without an equation, but instead by the action of filling each column, we call this "a covariation
approach to functions."

Graphs: In the graph window, we have established a number of special characteristics.
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Graphs allow students to work with the visualization of graph shape as a means to express
functional relations. We have provided students a number of tools to support visualization. These
include the sketching tool, and the three visual transformation tools. The visual transformations
are designed to ailow students to reflect around any vertical or horizontal line, to stretch from any
vertical or horizontal line of invariance (the anchor line) and to experience these actions as
reminiscent of the physical activity. The visual reasoning that develops from the use of these tools
is in marked contrast to witls the other representations. Rescaling on Function Probe is not done
automatically for scaling and unitizing are an integral part of the understanding of functions. Thus,
although scales can be saved, they must be specified in domain and range and the size of the units.
ogarithmic scales are allowed on either axis and in any base. The graph window also provides
three tools that aid in the transition from curve shape to numeric analysis. These include the bar
graph, the point locator and the sampling tool. A slope tocl is under design. These tools allow
students to ground their examinations of accumulation and rate of change in the visual imagery.

Algebraic Notation is handled in both the graph and the table resources. After having
withdrawn from an emphasis on aigebraic notation :n order to develop the other representations
more fully. we are only now reconsidering the independent contribution of this symbolism to an
understanding of functions. Algebraic notation provides a compact form of description that allows
one to both input and act on individual values and to see a generalized form. It has become the
defining factor in creating families of functions as one learns to distinguish the forms of equations.
It allows one to apply arithmetic operations and rules (distributive, associative, commutative) and
properties to the algebra of functions to decide on equivalence. It allows the variable to function as
a description of variation across numbers and as a means to find an unknown. In future years, as
we explore the use of Function Probe with middle school students, we hope to learn more about
this representation’s unique contributions.

Calculator. The calculator in Function Probe provides an interesting contrast to the other

representations. Two characteristics have become prominent in its use. Firstly, it functions as a
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means to bridge numeric with functional reasoning. Students use it to get more accurate numbers.
Secondly, it makes the functions act a tools in procedures. Students will carry out a procedure a
few times and then build a button. This button captures the series of actions but then as it is
graphed captures the sense of a function. By building the buttons, the students become more
aware of the order of operations that can appear tacit in the algebraic symbolism.

With the calculator, sin and cosine become a linguistic primitive that is carried out by an
underlying procedure and coded with a sign. Embedding the use of sin and cos in such a device
can lead to their use as a command without necessarily understanding fully their underlying
meanings. We witnessed this use in a study of an integrated math and physics class (Doerr, 1994)
and describe such use as problematic only if the conceptual foundations are not developed over
time. The calculator thus provides a linguistically rich representational from but must be used
carefully to promote deep rather than surface competence.

Multiple Representations: These representational contributions then combine into what I have
labeled an epistemology of multiple representations. By this term, I refer to the coordination and
contrast among the different representations, the increasing sophistication of their use, and
reflection on one's path in their use. When one combines multiple representations with context,
one has the basis for a modeling approach to functions.

IMPLICATIONS FOR DIVERSITY IN STUDENT THINKING AND FOR REFORM AT
THE SECONDARY LEVEL

In the United States, reform at the secondary and post-secondary levels has lagged behind
reform at the elementary level. I wish to propose that the following four factors contribute to the
resistance of the secondary and post-secondary program to change:

1) Technology and context are viewed as ancillary to mathematical thinking;

2) An excessive and narrow orientation towards abstraction alienates many students, causing

them to fail;

3) Issues of equity and diversity have been viewed as secondary rather than as a primary
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driving force behind reform; and
4) Constructivist instruction is interpreted as relevant only to young children.

Each of these assumptions secures the place of traditional teaching, and as such, slows down
reform. In this final section of the paper, I would like to present the outlines of a theory of
intellectual development that allows one to challenge each assumption, and by referring back to the
Ferris Wheel problem demonstrate how such changes can lead to the improvement of mathematics
education.

To view technology as ancillary to the development of mathematical thought is to isolate
mathematics from much human and cultural activity. I would claim, instead that mathematics is a
technology--its development suggests that it s inherently a tool to investigate human activities.
Viewed this way, mathematics can be seen as a product of human intellectual activity. Though it
may seek to capture patterns that we believe transcend human iimitations, knowledge--that which
we can claim to know--cannot achieve this transcendence; it is human knowledge, cast in terms of
our understanding of the events, examined with our technologies, and communicated in our
languages and forms of representation.

One approach I have found productive is to examine mathematics through a Vygotskian
perspective. Vygotsky, in Thought and Language, analyzes conceptual development as the
dialectic between the development of thought and the development of language. Thought, he
argued, has its roots in the use of physical tools; and language has its roots in social interaction.
These two components then interact to create the development of conceptual thinking. Analyzed
this way, mathematics carries its character as both related to tools and language.

As demonstrated in the Ferris Wheel example, the mathematics of functions is influenced by
the use of the computer software. New issues arise with the anchor line in stretching or with the
difference command, and others become less problematic. The software tool creates the basis for
communication. A language of stretches and shrinks, of fills and first differences, of building

buttons and sampling points evolves around the use of the tool and influences the directions in
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which the students' proceed.

Vygotsky warned that in isolation from each other neither thought or language can become
fully developed. He identified the "pseudoconcept” which occurs when a person learns to use a
concept linguistically correctly, but lacks the development of thought to support it. He argued that
the development of the pseudoconcept is a natural part of conceptual development, because
language use can precede conceptual development, but warned that unless further development of
thought takes place, conceptual development will cease. Further development involves the
interplay between the spontaneous everyday rudiments of thought and the systematic and
hierarchical aspects of scientific and analytic knowledge.

This analysis of the pseudoconcept is an apt warning to those of us in mathematics.
Mathematics, when dislocated from its roots in the use of tools, can beceme the manipulation of
abstract symbols. Excessive focus on the symbolism, without adequate attention to the
development of students' spontaneous thought, can result in the development of pseudoconcepts
which never ripen into concepts. Interestingly enough, Leibniz, the inventor of a powerful
notation for calculus, recognized this danger. In creating his notation system, he sought to
transform calculus into "mere child's play" and to allow it to "be done in the blink of an eye." In
doing so, he created a notation that allows calculus to be taught to students who lack an
understanding of the ideas that spawned it. Near the end of his life, Leibniz realized that in
creating this remarkable notation system, he had contributed inadvertently to the decline of others’
intellectual activity. In 1714 he wrote a lament, "One of the noblest inventions of our time has
been a new kind of mathematical analysis known as the differential calculus, but while its
substance has been adequately explained, its sources and original motivation have not been made
public" (Child, 1920, p. 22). Ironically his own notational system is implicated by this lament.

The second component of resistance to reform, an excessive and narrow orientation towards
abstraction. This entails a focus on language development without adequate attention to the

development of thought. Vygotsky's dialectic requires the interplay between thought and
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language. Unfortunately, people have interpreted abstraction as the development of ideas
increasingly distant from concrete, everyday, kinesthetic, or perceptual experience. Thus,
symbolic algebraic presentation is considered more abstract, while graphs and tables are viewed as
less abstract. Knowledge development is described as a spiral away from basic everyday
experience into a world of abstract objects unrelated to activity. It is described as a spiral from
process to object, to process, to object, etc. until one arrives in a mathematical reality where
everything is abstraction (Sfard, 1994; Artique, 1992). (See Confrey, 1993c, for a criticism of
this approach)

In contrast, I would argue that sophisticated mathematical thought does not entail leaving the
realm of everyday activity but in forming rich connections with it. These connections may be in
the form of actions, such as captured by the transformational tools, stretching, reflecting,
translating, and not just in teris of physical objects, but they are no less connected to everyday
activity. To describe this revised view of mathematical knowledge, I discuss the need for a
dialectic between "grounded activity" and "systematic inquiry." Bascd in a revision of Vygotsky's
thought and language dialectic, grounded activity includes the use of contexts, activity and tools to
get a feel for an idea. Far from being just intuitive, this environment is complex, anchored in goal-
directed activity and tangible results. Competence in it may be likened to craftsmanship or design
expertise. Movement within grounded activity is based on example, experience, rules of thumb,
and knowledge of one's resources. It can be likened to Donald Schon's descriptions of "thinking
in action." Systematic inquiry, in contrast, describes ways of codifying that activity, of creating
languages and symbol systerns that allow one to move abcut logically and analytically, without
reference back into the system of grounded act. .ty. One can make predictions about the grounded
activity because systematic inquiry entails creating an internally consistent logical system that
models certain aspects of the grounded activity, a simplification or idealization . However, my
claim is that robust intellectual development lies in the interplay, in the dialectic, between the two,

not in alienation from grounded activity or in its portrayal as child-like, primitive or
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intellectually inferior.

The demonstration with the Ferris Wheel is an example of grounded activity. In watching the
beam of light change, and relating that to the movement of the Ferris wheel, students gain
experience with functions, trigonometric functions in this case, as tools for producing or analyzing
movement. They see how one can transform circular motion into vertical motion in a plane and
learn to relate the sine function as a mathematical description of the motion. Historically, the term
"function" was originally defined as a tool. Leibniz described six functions as tools for examining
a curve (Dennis & Confrey, 1994; Amol'd, 1990). Seeing functions as tools anchors them as a
form of grounded activity.

Using the dialectic between grounded activity and systematic inquiry as a guiding framework,
one can use multiple representations to populate the dialectic. Some activities using different
representations can be designed to be closer to grounded activity; others nearer systematic inquiry.
For instance, a graph produced through the sequence of measurements taken using the Ferris
Wheel device will be closer to grounded activity than one produced by the student using the
transformational tools on Function Probe. Moreover, using an equation such as y = 10sin(x/3.82)
+ 12 to produce a graph would be more closely aligned with systematic inquiry. One would need
to be able to interpret the symbolic code for which the meaning of the symbols, the implied
operations and the order of operations are all conventionally defined in a linguistic system. The
essential claim here is that all forms of activity, from those grounded in tangible actions to those
systematized into a linguistic framework, contribute equally to mathematical understanding.

When mathematics learning is idealized as a spiraling towards increasing planes of abstraction,
and when it leaves the cultural activities of people behind, elitism becomes increasingly likely. The
elite intellectual mathematician is portrayed as "freed" from the constraints of humanity and as
transcending the impurities and imperfections of bodily demands, daily activities, cultural
differences and politicai agendas. Although some mathematicians prefer to practice heavily abstract

mathematics, and possess the linguistic facility to do so, many do not and draw extensively on
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metaphor, image, action and experience in carrving out their profession.

Mathematics, as cast by the academic world, is thus forged as an intellectual filter that creates
ani nurtures that view that only those with the most talent will survive. If one wanted to reinforce
this view, then it is evident that one should continue to allow mathematics to remain inaccessible.
cast it as a set of rituals into which only the elite can rightfully earn initiation and cleanse it of its
cultural, and political character, so that any critique is nearly impossible.

Obviously, I do not believe that a conspiratorial group of academic mathematics is scheming to
keep the field protected from the common person. To suggest this would be to suggest that
mathematicians act intentionally to secure the elitism of the field, that they hide all traces of
controversy, bias and imperfection. To a practicing mathematician it is clear that this would be
caricature. However, it does not seem too farfetched to point out that the academic mathematics
that dominates instruction has been practiced by an intellectual elite, and participation in that elite
has been severely limited by gender and race. And, thus, it seems plausible that an intellectual drift
in the directions described could have occurred as a result of the modes of operation of the
academy. The claim is that the accumulation of a whole series of societal structures, from
commercials to classroom practices, from tests to college entrance requirements, from funding to
publication and tenure policies, from intellectual mentors to newly minted doctoral students, makes
the system work. Changing this would require a major realignment.

More importantly, if this portrayal is accurate, what remedy would alleviate the problem? It is
the purpose of this paper to suggest that if one puts the equity issue, the question "what would it
take to achieve equitable access to the field?" first, a difference set of reform activities can emerge.
One major contribution would be to acknowledge a broader set of activities as a part of
mathematical activity, thus enfranchising more people to decide what should be a part of
mathematics learning. A second goal would be to change the mathematics preparation from its
orientation towards increasing abstraction to include a more diverse set of activities. The

framework described in this paper, from grounded activity to systematic inquiry, is designed to
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do this.

In making the claim that mathematics and its instruction need to be revised to incorporate a
dialectic between grounded activity and systematic inquiry, I am arguing that one can specify a
view of mathematics that will support more equitable and widespread access, while maintaining
curricular rigor. Such a view can be seen as more rigorous, in that it would demand multiple
forms of argument across representations and would require one to seek and describe the genesis
and evolution of an idea and its relationship to experience.

One can see how the Ferris Wheel example offers new challenges to us in the diverse realms
of visualization, dynamic representation, the design of tools and so on. This is no intellectual
desert, but a provocative and fruitful arena of challenge.

The final issue raised was that another obstruction to change at the secondary and post-
secondary level is the belief that constructivist approaches apply only to young children.7 Arguing
for the dialectic between grounded activity and systematic inquiry challenges this assumption, in
that the constructivist commitment to the role of activity and physical or kinesthetic experience is
relevant. But this alone is not a sufficient to prove the relevance of the constructivist program to
secondary reform. Constructivism also requires one to acknowledge the developmental
progressions in learning. This requires one to seek multiple paths by which students can move
towards increasingly sophisticated thinking. Viewing mathematics within a dialectic relationship
between grounded activity and systematic inquiry does not imply that children must proceed from
grounded activity to systematic inquiry. As studies in early childhood demonstrate, children from
their birth are embedded in a world filled with expression, language, and activities and objects.
They need not be limited to playing with objects before language acquisition, for they are already
expressing their views. And they benefit tremendously from the exposure to language, to reading,
to song before they ever can respond verbally to it.

Thus, a recognition of the role of constructivism entails the recognition that children's models

7 In this discussion, [ am ignoring the tensions between the Vygotskian and constructivist philosophies. I have
written a number of articles on this question {Confrey, 1993a) and in the last, I present a means of unifying the
theories.
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may not mirror those of adults. These models must be assessed within a child's framework. As
stated in the beginning of this paper, learning to see children's mathematics is a challenging and
provocative activity and it can go a long way to overcoming the arrogance of adult mathematicians
and mathematics e ucators. Children's perceptiveness is markedly underestimated in mathematics
due to our own tendency to recognize linguistic forms but ignore their fundamental roots. Thus,
constructivism also requires one to recognizes the epistemological significance of student invention
and to reexamine and challenge one's own ideas in light of these inventions.

Starting to engage in intensive reform at the secondary and post-secondary level is essential if
a more equitable set of participation patterns in mathematics is envisioned. However, that reform
must include a deep reconceptualization of the issues raised in this paper: the role of context and
technology, the reconstruction of abstraction, the prioritizing of equity, and the admission of

constructivist views of teaching and learning.

CONCLUSION

In this paper, I have suggested that in order to support diversity, we need to reconceptualize
our understanding of mathematics. Mathematics, I suggested, can be better viewed as a dialectic
between grounded activity and systematic activity. Doing so allows us to admit the use of tools,
contexts and multiple representations into the mathematical enterprise. As we do so, we will
relinquish the over-reliance on generalization and create a more balanced view of generalization and
distinction. These changes, I suggest, are necessary if we are to challenge a narrow view of
abstraction and in its place recognize the importance of context and multiple representations.
Finally, I have argued that doing so will be necessary if we wish to see a more diverse community

participate in the practice of mathematics.
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MATHEMATICAL OPEN-ENDED PROBLEMS IN CHINA

Zaiping Dai
Zhejiang Education College

In mathematics education in China, solving problems has always been the focus of the
people's attention. But it usually deals, by tradition, with routine problems and closed exercises.
Such kinds of problems usually have integrated conditions, a clear strategy and a certain
conclusion. Since the whole world has attached great importance to "problem solving,” China has
not only recognized it is necessary to introduce open-ended problems, but has also come to know
their effect in the training of students' creative ability since the 1980s. But in China, the syllabi
greatly limit mathematics teaching in the primary and middle schools. Every year the university
entrance examination is also assigned by the State Education Commission in a unified way. This
makes it clear that open-ended mathematical problems should be combined with what is stated in
the syllabus, instead of ingenious problems for games.

Here are some examples:

1. Try pointing out the common points of the two algebraic expressions:

12a2b2¢ 8a3xy

2. If there are twelve numbers (from 1 to 12) on the face of a clock, try to add negative signs

to some numbers and make the sum of the above numbers zero.

3. Which numerical values can replace factorable (in the limits of integer) "a" and "b" to

make the following polynomial?
(1) x2+ax—18 (2) x24+Tx+b

4. What kind of figures can the sections of a cube be?

The foudwing are the features of the problems:

A. The content is interesting and the st *dents are familiar with it so that the whole class can

participate in the experiment.

B. There are varieties of keys to the problems. Different keys can be concluded by students
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at all levels (high and low).
C. Asthey deal with non-routine problems, students can understand mathematical rules and
their essence in the course of solving problems.
D. They are closely combined with the content mentioned in the syllabi.
The following is the teaching experiment on the second problem mentioned above.
1. Time: 9:00-9:45 a.m., Juae 15, 1993.

2. The experimental class: Class 3, Junior I, 47 students in it, Leidian Middle School,

Deqging County, Zhejiang Province.
3. Procedure:
(1) Introduction: The teacher adds a negative sign at random to some number on the
face of the clock:
(=12)+ (=1 1)+(=10)+9+8+7+6+(=5)+4+3+2+1=2.
Since the key is not zero, the students are asked to readjust the signs in different
ways in order to make the key zero.
(2) Individualized learning: The students are required to write out the keys on the
paper in four minutes.
(3) Collective discussion. Conclude the work, with the help of the teacher.
A. As 142+3+---+12=78, the negative signs should be added before the
numbers whose sum is 39.
B. The keys are antithetical; i.e., if the numbers (12,11,10,5,1) can be keys,
other numbers (9,8,7,6,4,3,2) can also be keys.
C. Negative signs should be added to four numbers at least or eight numbers at
(4) Individualized learning: Write out the keys in four minutes after mastering the
above patterns.
(5) Varieties of exercises:

A. If the odd numbers on the face of the clock are erased, only six numbers
132




(2,4,6,8,10,12) are left. Can the negative signs be added to some numbers
to make the sum zero?

B. The nights and the days are shorter, on other celestial bodies. than the
nights and days on the earth. Only nine numbers (1,2,...,9) are on the face
of the clock. Can the signs be added to some of the numbers and make the
sum zero?

(6) Collective discussion: Add the negative signs to (1,2,...,n) n numbers. Can we

make the sum of the numbers zero?

_ Comment on the experimental lesson. In the same four minutes, each student can

write out only 2.1 keys. But after summing up to regular patterns of problem
solving, each one can write out 7.04 new keys. About 81% of the students believe
that the lesson is interesting and helpful. Only 19% students believe it is tense,

disorderly and unhelpful.
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Opening Ceremony

Weifang Session
Shou Guang Hotel

Thursday, October 7, 1993
Professor Zhang:

My colleagues and friends:

After our two-day session in Shanghai and a visit to Qufu (the hometown of Coniucius),
enroute to Weifang, we now gather here in the lecture room of the Shou Guang Hotel, Shou
Guang County, Weifang City, for the Weifang Session of our seminar. According to prior
arrangements, a nationwide conference on mathematics education was held in Weifang
yesterday. The sixty-two participants of that conference have joined us today.

Among them, there are many experts with a high reputation in China - for example, Zhong
Shanji, Professor in Beijing Normal University. Let us give a heartfelt welcome to all of them.

Now, please allow me to introduce Professor Xue Maofang to you. ile is not only a
mathematics teacher in the Weifang Education College, but he is also an activist for reform in
mathematics education in China. He established a fund, contributed to by his younger brother,
Mr. Xue Mao Lin, a successful entrepreneur in the countryside. The fund is helping to
establish many study programs in mathematics education, including the seminar and conference
here. Tomorrow afternoon we will attend the inauguration of the Institute for Mathematics
Education in Houzhen Town. It is the first private institute established for mathematics
education in China. Professor Xue is the Deputy Director.

The goal of the nationwide conference that Professor Xue organized is to enable more
Chinese mathematics educators to have opportunities to exchange ideas with mathematics
educators from the United States and Japan. Just for this reason, we have the Weifang Session
of the U.S. - Japan - China seminar.

It is my wish that both the seminar and the conference will be successful.
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THE PLACE OF PROBLEM SOLVING IN US MATHEMATICS
EDUCATION K-12 REFORM: A PRELIMINARY GLIMPSES
Joan Ferrini-Mundy
Loren Johnson

University of New Hampshire

The purpose of this paper is to highlight issues about the position of problem solving in the
current reform movement in mathematics education in the United States. However, a brief
discussion of the context in which mathematics education reform is occurring seems an appropriate

first step for this discussion. In addition, an overview of the reform effort is provided.

CONTEXT IN WHICH REFORM IS OCCURRING

Educational Policy in the U.S.: An Exampie of Diversity and Similarity

Control of educational policy in the United States is a function of local and state boards of
education. There is no national curriculum for mathematics, and there are no uniform criteria for
teacher certification. Funding for education comes from a variety of sources (e.g., income taxes,
property taxes, sales taxes, and lotteries) and from various levels of government (ie., local, state,
and federal). As a result, each of the fifty states has its own education code, its own requirements
for graduation from high school, its own process of adopting educational policy, and its own
formula for funding education.

In spite of the autonomy of each state, there are many similarities that exist among the states’
educational programs. This is particularly true in a discipline like mathematics which is often

textbook driven--especially at the secondary level (grades 7-12). Other factors which tend to

8 Parts of this paper appeared in "Recognizing and Recording Reform in Mathematics Education: Focus on the
NCTM Curriculum and Evaluation Standards for School Mathematics and Professional Standards for Teaching
Mathematics” as part of the symposium, Multiple Perspectives on School-Based Reform of Mathematics, AERA
Annual Meeting, Atlanta, GA, April 1993, and in The Mathematics Teacher, "Recognizing and Recording Reform in
Mathematics: New Questions, Many Answers", J. Ferrini-Mundy and L. Johnson, March 1994. Material taken
from project documenters' scenarios is indicated with an asterisk (*). Material from scenarios by: B. Whitley, T.
Schram, T. Wood, J. Fisher, L. Moseley, G. Mills, L. Johnson, and P. Tinto. Preparation of this paper was
supported by a grant from the Exxon Education Foundation, through the National Council of Teachers of
Mathematics (NCTM). Any opinions expressed herein are those of the author and do not necessarily reflect the
positions or policies of the Exxon Education Foundation or NCTM.
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stabilize curricula among the states include content of the curriculum, tradition, standardized
testing, and the limited time which teachers have to really get involved in change (Eisner, 1990). It
is against this backdrop of diversity and similarity that we must view reform efforts in mathematics
education.
A Professional Organization's Attempt at Reform in Mathematics Education

The National Council of Teachers of Mathematics (NCTM) is the most prominent
professional organization for mathematics education in grades K-12 in the United States and
Canada. Its more than 100,000 members are made up of classroom teachers, university
mathematics educators, mathematics supervisors, and others involved in mathematics education.
There are also institutional memberships, and many schools and universities are members.
For seventy-five years, NCTM has served as a clearinghouse and resource center for all topics
related to mathematics education. It publishes three monthly journals for each of the grade levels
K-4, 5-8, and 9-12. Regional and national meetings are held for its members where new
approaches to mathematics teaching and learning are introduced and where research is presented.

Reform efforts in X-12 mathematics had been piecemeal until NCTM saw the urgency and
potential value, in the early eighties, in bringing together the thinking of the ﬁeld into a vision
about mathewatics education reform. Broad based writing groups were formed to develop the two
documents, Curriculum and Evaluation Standards for School Mathematics (1989) and the
Professional Standards for Teaching Mathematics (1991). These documents are giving direction
and meaning to the reform effort in mathematics education that is underway in the United States
and Canada. The documents have been widely disseminated and discussed by the NCTM
membership, and anecdotal evidence indicates that teachers of mathematics are seeking ways to
enact the ideas contained in the Standards documents. These documents are also serving to inspire
standards development in other disciplines. But there are a number of questions that are being
raised as schools, districts, and states attempt to incorporate these Standards in changing their

curriculum and pedagogy.
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For classroom teachers, pressing questions include: What does it mean to implement the
Standards? Are there examples of implementation that serve as models to be followed? Are my
current classroom practices in accord with the Standards? Where is the curriculum that is
consistent with the Standards? The documents also challenge policy makers to consider issues
such as: Were the Standards developed to serve as a national curriculum in mathematics education
for grades K-12? What are the financial requirements and the risks for making such changes in
our schools? Can we implement parts of the Standards and ignore the rest? Will our teachers
undertake such a sweeping change in content and teaching practices? What must we do to support
teachers in these changes? Will students learn the mathematics they need to know? Can this be
done quickly? How much will it cost? The general public is aware that the Standards documents
exist, and now rightfully asks: Are the Standards being implemented? How is it working? Are
students learning the mathematics they need to know? Researchers in mathematics education
ohserving these efforts at reform are curious: What factors are enabling and hindering mathematics
reform ? Can "transformative research" describe and explain the teaching and learning of
mathematics occurring in times of change? How do schools move beyond general commitment to
improved mathematics, toward specific strategies for change and innovation? What is sustaining
and supporting mathematics reform? How do teachers, administrators, students, and parents
associated with a school that s undertaking major shifts and innovation in mathematics react to,
engage in, and feel about we process? What dilemmas, contradictions, and impediments to the
reform effort do schools, teachers, and administrators face?

The mathematics education reform climate provides a rich and complex context for teachers,
researchers, and learners of mathematics. There will be multiple perspectives, contexts, and
interpretations for all of these issues. By deepening the discussion, we hope to advance efforts

toward the improvement of mathematics teaching and learning.

The R3M Project
In an effort to address some of these questions, the NCTM Task Force on Monitoring the

Effects of the Standards recommended in its final report (Schoen, Porter, & Gawronski, 1989)
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that NCTM "monitor their own and other activities designed to implement the Standards and to

monitor (not conduct) a broader program of research and development” (p. 27). The Recognizing

and Recording Reform in Mathematics Education (R3M) Project began in 1992 as part of this
monitoring work, with funding from the Exxon Education Foundation.
The goals of R3M include:

« To measure the breadth and depth of knowledge about the Standards in various
communities;

« To develop useful descriptions of teachers, classrooms, and children in settings where
significant attempts at change in mathematics education, which seem to be consistent with the
Standards, are underway;

« To describe the effects of this changed practice on classrooms and on children’s learning of
mathematics, in ways acceptable as evidence by teachers, policy makers, and the public;

« To increase understanding of the circumstances, forces, and situations in which change in the
teaching and learning of mathematics occurs;

« To synthesize and disseminate insights and findings about contextual features that promote
and hinder change in mathematics teaching and learning as envisioned in the Standards.
Current funding provides for collection of a modest amount of baseline data about the status

of mathematics teaching and learning, called the Landscape Scan (Weiss, 1992), to be
supplemented by synthesis of data available from other projects that provides a sense of the status
of reform. The major focus of the project is to identify and study a series of interesting sites of
reform, in an effort to learn about the change process and the interpretation of the ideas presented
in the Standards documents in diverse contexts. This work involves selecting and visiting sites,
and developing "documentaries" to tell the stories of the sites. The actual site visits, made by
documenters representing classroom teachers, supervisors, and college and university teachers,
began during the 1992-93 and 1993-94 school years. In most cases our sites are entire schools,
with some instances of extension to full school districts. The context provided by the school

district, as well as the particular examples found in individual classrooms, is important in all cases.
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The R3M project is still in its early stages. We are in the process of organizing

and analyzing the very rich data developing from our site visits. As we progress on R3M, we all
are learning how important it is to recognize and highlight the complexity of significant change in
mathematics teaching and learning. We hope that our project products can portray this complex

context as we describe the efforts and accomplishments of school sites, struggling to bring about

their visions of what school mathematics should be.

KEY ISSUES IN MATHEMATICS REFORM DISCUSSION
Images of Practice
Ball (1992) provides a helpful discussion of standards, informed by her own participation in
the development of the NCTM Professional Standards for Teaching Mathematics INCTM, 1991).
She observes that "standards are intended to direct, but not determine, practice; to guide, but not
prescribe, teaching" (p. 34). Porter (1989) advises that the best one should expect of standards is

a "context of direction" for change. The Standards documents encourage teachers toward an

unfamiliar and somewhat invisible version of practice. R3M takes the position that multiple
interpretations of the Standards are of great significance, and that these interpretations need to be
described and shared.

Researchers and teachers both are calling for useful descriptions of practice, descriptions that
provide images toward which they might aspire. Davis and Maher (1993) talk about the
importance of enriching our collection of "assimilation paradigms" (p. 27). These assimilation
paradigms might be construed as powerful, rich examples that can enlarge our wisdom about how
to make change. Teachers are looking for examples of Standards pedagogy in which they "might
move constructively in these [Standards-like] directions" (Boyer, 1990). Perhaps by providing

practitioners with details of real and familiar situations, they might better see themselves

participating in the reform process. The R3M project hopes to develop such images.
We are crafting scenarios of examples that address issues such as: What happens when

technology is regarded as central in a secondary school mathematics program? How does teachers'
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concern for students' knowledge of basic facts interact with pedagogy that is oriented toward
inquiry and exploration? What results from collaboration with university faculty in mathematics
reform? How are sites coping with standardized testing? What roles can be played by mathematics
specialists? How do curriculum frameworks develop? As we continue to work with our data and
to visit additional sites, we will enlarge this list of issues and will gain experience with what will be
most compelling formats in which to share this information.

Interpretation or Implementation?

A view that Standards are intended to be implemented could lead to efforts which result in
change at only a surface level. Reys (1992) describes a Parent-Teachers Association Meeting at his
child's school where a parent asked the principal if the school was working with the Standards.
The principal replied, "Yes, we did those last fall." "Doing them" meant devoting 20 minutes of a
staff meeting to the document and distributing copies to all of the teachers. There is some danger
in the current situation of falling into the change for change's sake that has characterized some past
reform efforts. Fullan (1991) and Sarason (1991) both have warned about oversimplifying the
change process and expecting that reform can result from piecemeal change. Mathematics
classrooms can appear to be quite Standards- oriented, with calculators in evidence, students

working in groups, manipulatives available, and interesting problems under discussion. One of

the challenges we face in R3M is to learn how to look beyond this evidence and gain some
understanding, at a deeper level, of what is happening in these classrooms, and to articulate, as
best we are able, how the teachers and students are experiencing these approaches.

Schroeder (1992) has expressed his dissatisfaction with the notion of implementing the
Standards. He points out "Far from prescribing a plan for teachers to carry out, the standards
portray teachers as active decision makers who are constantly monitoring their professional practice
and frequently engaging in dialogue with other professionals.” (p. 70.) Our preliminary finding in
R3M is that individual schools and groups of teachers are making conscious choices about the
focus of their reform activities, often consciously or unconsciously well-suited to other contextual

features, such as the nature of the school, community, or teaching staff. Within the focus they are
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developing interpretations of ideas proposed in the Standards and other reform resources. These
interpretations are personalized, situated within the context of a site, and evolve as practice and
experience informs the process. What we are seeing is better characterized as interpretation, than
as implementation.
Validation or Catalyst?

An issue of interest for this project in particular is to better understand the role of the
Standards documents in the reform process as it is unfolding in various sites. In many cases, it is

possible that the Standards will serve as a validation and reinforcement for what a teacher or

school district is already doing. This might be particularly true in sites that were committed to

mathematics education reform prior to the release of the Standards documents. R3M is concerned
with better understanding this phenomenon and learning how the existence of the documents will
influence ongoing efforts. In other cases, the Standards seem to be functioning as a catalyst for
reform and change. We are exploring whether the "stories of reform" in these two different

contexts will turn out to have interesting differences.

METHODOLOGY FOR THE R*M PROJECT

The issue of how to look at the sites in a project of this sort is a complicated one. One
approach might be to develop a checklist of Standards- like indicators and search for their
occurrence. This could lead to a "Standards implementation score” for each sites. This line of
thinking might appeal to certain publics interested in reform, but is inappropriate to the task of
understanding the way that the documents are being interpreted. The perspective guiding this
project is consistent with the philosophical intentions of the NCTM Standards, which seem to be
based in constructivist assumptions. We recognized that those communities, schools, classes and
teachers that we would visit were in a process of making sense of the Standards, or of more

general reform discussion in mathematics, for themselves, and that this sense-making process

would be visible through practice. A primary principle for R3M is that we hope to deepen our

understanding of the site from the perspective of those involved in the setting; that is, to see and
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present the site's efforts from the site's point of view.

A set of five rather broad guiding themes were used to orient the documenters’ visits. They
emerge from the Standards, as well as from the various lines of thinking described earlier. We are
trying to learn about:

1. The "mathematical vision" held by the people in the site.
2. The "pedagogical vision" held, relative to mathematics, by the people in the site.
3. How contextual features are influencing, both positively and negatively, the teachers’
efforts to change their mathematics practice.
4. The way that the mathematical and pedagogical practices in his school are affecting
students.
5. The evolution of the mathematics program in this school.
These broad guiding themes are explored through interviews with administrators, te achers,
students, parents, and others; through observations of the classrooms and the school; and through
examples of classroom materials and student work.
It Is Not a Contest, But a Study

Sites are eager to learn "how well they're doing” or "if the Standards are being implemented

correctly.” R3M does not give seals of approval, judge correctness, or confirm that someone has
found the right way. We are hoping to learn about many interpretations, to describe them in
helpful ways, and then share them with practitioners who can use the stories to better predict and
understand what they might encounter as they choose a particular interpretation. We looked for
diversity among our selected sites. This diversity included the length of time change has been
taking place, the cultural and geographical setting of the site, and varying degrees of commitment
by staff to the change process. For example, some sites are just embarking on reconsideration of
their mathematics programs, while others have been focused on mathematics for several years.
Some sites are making incremental changes in an otherwise traditional mathematics program; others
have initiated sweeping changes that encompass all aspects of mathematics learning and teaching.
We selected sites because of their variation and not their uniformity.

Summary of Findings From Landscape Scan

In October of 1991, teachers of mathematics in grades K-12 from 121 schools in eleven
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states across the U.S. were surveyed (Weiss, 1992) about their attitudes toward teaching
mathematics, their instructional practices, and their knowledge of the NCTM Standards.
Basically, teachers at all lezls are aware of the mathematics reform discussion, and express
commitment to moving toward practice that values the tenets of reform. Their sense of how well
prepared they are for this reform varies by grade level, as do their inclinations to use innovative

methods and materials in their own classrooms.

PROBLEM SOLVING
"Mathematics as problem solving" is the first Standard in each of the three sections (K-4, 5-
8, 9-12) of the NCTM Curriculum and Evaluation Standards for School Mathematics (NCTM,
1989). Although the discussion about the nature and position of problem solving is different in
each of these three sections of the Standards, certain features are constant. At all three levels,
there is an emphasis on: using problem-solving approaches to investigate and understand

mathematical content; formulating problems from situations within and outside mathematics,

S P R LT T

developing and applying strategies to solve a wide variety of problems, verifying and interpreting
results, and becoming confident in using mathematics.

This stance toward problem solving is in a sense the more modern version of a long-standing
commitment, in the U.S. curriculum, toward making problem solving a central emphasis. Surveys
done in the 1970s (Osborne & Kasten, 1980) revealed strong support for such conclusions as
"problem solving should receive more emphasis in the school mathematics program during the
coming decade.” A number of interesting issues about problem solving were discussed in this
context, including detailed descriptions of heuristics, problem solving as a means toward skills
development, and problem solving as a means of introducing mathematical ideas. T 1e issues about
problem solving in 1980 are somewhat different from those under discussion today, at least as the
NCTM Standards play arole in that discussion. A quick look at the 1980 NCTM Yearbook
shows numerous references to Polya and his thinking, attention to various meanings of problem
solving as a goal, process, and basic skill, heuristics, problem posing, textbcok problems,

144




problem solving strategies, and means for measuring problem solving ability. In today's reform,
the issues relative to problem solving are framed in different language. The NCTM Professional
Standards for Teaching Mathematics {1991) speak of worthwhile mathematical tasks, and these
seem to be in the context in which problem solving, as well as development of understanding and
skills, problem formulation, mathematical reasoning, and communication all occur. This
broadened outlook on problem solving seems to raise certain new challenges, both in research and
in practice.

While the roie of the documenters in the R3M project was to be a non-evaluative one, it
became clear on our site visits that teachers' perceptions of what it meant to implement the
Standards varied widely. We saw some enthusiastic teachers who were fluent in mathematics
reform language, and whose classroom practice was not necessarily consistent with their
articulated views. Problem solving was not specified for documenters as a particular focus.
Nonetheless, problem solving, in a general sense, has emerged in many ways as an important
theme within many of the sites. Perhaps most striking inthe preliminary data analysis is the
diversity of interpretations of problem solving within the sites, the differing commitments to the
various aspects of problem solving as indicated in the Standards, and the actual visibility of
problem solving priority within the classrooms. In the Landscape Scan described previously, the
issue of whether the Standards served as a catalyst or as a validation emerged as being reiated to
problem solving. One interviewee noted: "There are many of the teachers who are changing [what
they teach] because they want to add more problem solving focus to their curriculum. Some of
these same teachers have not heard of the Standards, but they've heard that problem solving is
important.” The long-standing prominence of problem solving language in U.S. mathematic:.
reform discussion is in some ways emerging as being synonymous with, or a shorthand
description of, what is implied by the NCTM Standards.

"We are doing more problem solving," is a commuou response to the question, "What are you
doing differently in your mathematics program?" Often the most frequently used terms are open to

a variety of interpretations, and "problem solving" is no exception. A number of new issues seem
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to be arising in problem solving today: What is the place of the group? Is there a place for
discussion in problem solving? What constitutes a "real” problem? What is the place of content
organization within a problem-driven curriculum? What is the nature of feedback and evaluation?
These are some of the questions we struggled with as we observed classroom instruction and
interviewed teachers, students, and others instrumental in the school mathematics community. The
following examples are intended to highlight some of the issues and interpretations we are seeing

in the project relative to problem solving in the NCTM Standards context.

EXAMPLES ABOUT PROBLEM SOLVING IN PRACTICE

Probiem Solving and the '"Real" World:

The Standards and other reform documents make a case for "real world" problem solving.
Our experience in this project is that this notion is interpreted many different ways. Although the
Standards use much language to discuss meaningful mathematics, we have seen a number of
situations where teachers' interpretation of "real world" seems to mean concrete in a more literal
sense.

One teacher explained the importance of relating problems to the real world:

I'm really trying to provide mathematics learning in a rich, problem-solving context

and not have everything be so unreal. I'm trying to teach a lot with concrete materials

before moving on to the abstract. I'm also trying to focus on the communication

aspect of mathematics. . . So, I have them do a lot of writing and talking about what

they are doing .. . I think I generally want them to learn something, to learn some

kind of problem solving... *
She bt lieves in "realness”, defined as use of concrete materials, in communication, and in "rich

context." Her actual classroom practice belies more of a mix of traditional computational work,

and the problems chosen are not closely linked to compelling context in the students' worlds.

Then what follows are two "warm up" activities, placed on the overhead projector:*

1. Given the following sequence that continues in the pattern established, find the
next two terms: 1, 3, 6, 10, 15, 21, . . .

2. In how many ways can 8 apples be placed in sacks with the same number of
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apples in each sack?

Following the problem solving, the students were given a handout of problems dealing with
addition and subtraction, and were directed to use colored tiles to solve the problems.

Other information indicated that this approach was somewhat new for the teacher involved,
and represented a rather large shift in practice. What are the prospects, and what need might there
be, for moving further into an approach to problem solving that pushes beyond these sorts of
applications?

Problem-Driven Curriculum

"Hear ye, hear ye hear ye! From this point on, I am Prince Navarro!" As the
mathematics teacher passes out ribbon-enclosed decrees, he says, "See to it that you
complete your tasks in a timely manner and with great pride, or I will see to it that
you rot in the dungeon!" Each decree provides a diagram of a castle's exterior and
the information that one gallon of paint can cover 550 sq. ft. Each group of three or
four students is asked to find the total lateral surface area of the castle to be painted in
celebration of the king's arrival; to advise Prince Navarro about how many cans of
point to purchase; and to determine whether the prince has enough money to repair
the roofs. *

This example from documenters' reports illustrates how one teacher introduced a problem-
solving exploration to students in his class. Such an exploration is referred to as a project, in this
secondary school. According to one of the mathematics department co-chairs:

The process of incorporating projects into mathematics classes dres not just mean
giving students longer or more difficult problems. It is a change in the way students
do mathematics and science. Since students work in groups to analyze a problem,
brainstorm answers, break the problem into manageable pieces, and arrive at a
solution to which all can agree, the process mimics many job situations. Since
projects help students teach themselves and each other, the material learned becomes a
part of the student, and this gives the student a stake in his own education. The fact
that projects extend and apply the students' knowledge and require them to write
clearly and explain their solution means that students remember what they learn and
see new connections. The real-life applications of projects awaken many at-risk
students to the fact that their education has some bearing on life outside the
classroom.*

The view of problem solving that is embodied here is interesting in that the process focus is very
salient. The teachers in this site have come together to develop projects as the centerpiece of their

mathematics teaching, and this individual argues that problem solving skills such as analyzing,

147




brainstorming, breaking down the problem, getting agreement on the solution, extending
knowledge, explaining, and finding connections, are facilitated through the combination of projects
and small group work. In this case, it would seem that the context lias provided the teachers a way
1" think deeply about the elements of problem solving.

Place of Manipulatives in Problem Solving

Manipulatives are used in a variety of ways to assist students in problem solving. One
documenter observed:

In a geometry class, students were working cooperatively on a project which involved the
application of geometric constructions. The task: Design a six-pack carton wrapper with a
one-inch overlap. "This is to be done based on the measurements of one can." *
The manipulatives used included soda cans, English/metric rulers, scissors, calipers, calculators,
planning sheets, wrapper paper, glue, tape, and markers. After the task was completed, students
evaluated their own efforts.

We have seen many instances of problems posed # -tudents with manipulative materials of
various sorts as accompaniment. The actual role of the manipulative within the problem solving
activity is not at all easily understood. For instance, in what context do manipulatives serve a role
in helping children make sense of a problematic situation? In what context might they be
superfluous? What challenges do teachers face as they incorporate these materials 1n their
pedagogy? Can manipulatives function as "tools", not as "tcys"? * How, and under what problem
conditions, do manipulative materials support children's constructive mathematics activity or
enable students to express their thinking to others?

Finding Problems Everywhere

In an elementary school, a teacher explained that mathematics has beccme an integral part of
the entire school day, rather than a subject taught for forty-five minutes or so. One student told the
documenters: "We always find a problem in something we do. Reading. [Our teacher] finds
problems, and we have to solve it with a partner or something.” Another student elaborated on the

role of problems:
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Our teacher usually has something planned every time. She read a book yesterday,

and there are problems in it, and she was reading; it was called A Million Fish or

Less. 1t had problems in it, and we had to think of what the problem was and find

out the answer. And now she made us think of a problem; and today you can work

in a group; and today we have to tell her we came up with a problem; and we can give

incomplete data so that people have to go search through the book and find it; and

today we're going to ask kids, the class, the questions and whoever can stump the

class will get a treat.*
How prevalent a by-product of a problem-oriented curricular and pedagogical approach is an
inclination for students to see and find problems in their own worlds? Once this way of thinking
about the world becomes part of the classroom norm, it is possible that the demands on the
teacher's mathematical resourcefulness could become quite challenging.
Har¢ Choices: Problem Solving or Basic Skills?

A teacher says:

I guess I'm a very tiaditional teacher. I've been teaching a long time, and I've seen a

lot of different programs come and go; and I just find that in the last few years, when

I think that it's good to be innovative and to offer the children a lot of different

aspects and different ways of doing things; but we're finding a lot of basic skills are

really slipping away....*
We found much evidence of teachers who are committed to experimenting in their pedagogy and to
doing the best for their students, but who grappled seriously with the problem-solving "vs." basic
Jkills dilerama. It is important to understand the ways in which teachers come to resolve and
handle this dilemma and to write about and disseminate their resolution, because without providing
this evidence, there is a strong possibility that problem solving could remain a Friday afternoon
activity.

CONCLUSION

This project has the potential to represent a new role for a professional organization in which
they ultimately will not have only been instrumental in the creation of national standards for
curriculum, teachers, and students in mathematics education, but also would take some
responsibility for describing the school interpretation of these standards. R3M is intended to assist

teachers of mathematics and local policy makers, in particular, through communication of the

stories of the sites. Sharing useful information with these audiences, helping them understand

what questions relative to the Standards are reasonable, and in learning more, as an organization,
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about what will count for these audiences, and adequate answers to the different questious they

hold, are key elements of R3M.
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ON MATHEMATICS EDUCATION IN JAPAN

Yoshishige Sugiyama

Tokyo Gakugei University

1. On the Excellence of Japanese Mathematics Education
In both of the first and second IEA research studies, the Japanese average scores were higher
than those of any other country. In view of these remarkable results, Japan is presumed to have
good mathematics education. However, I doubt that this is the case. It might be excellent in some
respects, but I think that the higher achievement of Japanese students does not depend solely on

mathematics education, but chiefly on the social conditions or on the general educational
environment in our country.

The reasons are as follows:

¢ The Japanese educational level is higher in general, including in mathematics. For

example, almost all Japanese (nearly 100%) are literate, and almost all are capable of

reading newspapers.

® The situation is caused by the belief that education is the basis of the social development of
Japan and of the prosperity of the individual, and by the social system in which people
believe that those who have a higher acadernic background have a greater chance to live at a
higher level. Thus, Japanese parents are eager to encourage their children towards a higher
level of education; so, many Japanese parents have their children go to Juku, or some other
additional education system other than school. This has also contributed to high

achievement in the IEA research studies.

o The Japanese educational system has no repeaters. But many other countries have a system
in which pupils repeat grades because they cannot learn some of the topics that are taught to

other same-age pupils. In Japan, however, every pupil is expected to learn the same
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topics. 1 wonder whether, in other countries, repeaters might not have an opportunity to
learn some of the topics that are taught at the grade level.

Beyond the reasons above, the quality of teachers is higher in Japan than in other countries.
Japanese teachers are trained in universities, or in teachers colleges. Recently, the number of
teachers that have a Master of Education degree is increasing. High quality teachers, of course, are
expected to be able to teach lessons better.

Though Japanese students got high average sccres in both the IEA studies, Japanese
education has some problems. Our pupils achieve higher scores in calculation, but have lower
achievement in solving problems. It is presumed that Japanese teachers place a lot of emphasis on
doing calculaticns, but while the ability in calculation is important, the ability to solve problems is
more important.

2. On the Use of Calculators and Computers in Learning Arithmetic

We Japanese have to reconsider our ideas about mathematics education in light of the
technology that is now available. Calculators that display common fractions and carry out
operations on common fractions are now available. Most are still expensive, but recently some
calculators with these functions have been developed for elementary school use in Japan and are
not so expensive. So, now is the time we have to consider whether or not we should use
calculators in arithmetic. If we use them in the elementary schools, in everyday classes and also in
examinations, then the aims or objectives of mathematics education might be changed.

One day I demonstrated 2 “fraction” calculator in a meeting of educational people. They were
quite struck with the demonstration and said that we no longer need to give arithmetic lessons in
school! Can this be true? This means that these people, and many others, think that the aim of
arithrnetic is to develop computational skills only. If so, the calculator could reduce the time for
teaching arithmetic. Is this a better way for us than present practices? I don't think so. I think that
there arc at least two ways to cope with this problem.

First, we have to re-evaluate our idea of giving pupils paper-and-pencil computational skills
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so that they do not have difficulty when they have no calculator handy. (This is the position that
we have taken up to now.) But is it reasonable not to use the calculator in these days when the
technology is easily available? Second, we need to recommend the use of calculators in arithmetic
classes and even on the examinations too. In such a case, we need not spend too much time to
develop training skills. But we have to consider some other aspects of this situation.

First of all, we must re-evaluate how much time we devote to pupils' paper-and-pencil
computational skills, and what degree of skill we demand. Even in the case of using the calculator,
some degree of skill is still necessary. In any case, we must teach the meaning of an operation and
its procedure in paper-and-pencil computations, and we might expect computational skill to some
considerable degree. Secondly, we must consider the aims or objectives of arithmetic teaching in
school. To date, we have put some emphasis on the skills of computation, and Japan had some
success in pupils' achievement; but, we must have other more important purposes for teaching
arithmetic. My opinion is that:

1) We have to place an emphasis on children understanding the paper-and-pencil calculation

procedures, not simply on doing computation.

2) We have to develop the ability and attitude of children to make generalizations; to make
guesses or hypotheses; to formulate and solve probiems; to revise or improve findings; to
make connections among things; and so on. These behaviors are not developed with the
use of calculators alone.

3) We have to develop pupils' abilities to solve real-world problems using calculators, to usé
mathematics for understanding the real world, and to use mathematics to etfectively
express meaning and to solve problems. Problems from the environment are one
example.

Japanese teachers might be placing emphasis on computational skills up to now, but we must

now place more emphasis on the development of problem solving skills in the new age of

technology use.
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OBSERVATIONS ON CHINA'S MATHEMATICS EDUCATION
AS INFLUENCED BY ITS TRADITIONAL CULTURE

Jun Li and Changping Chen

East China Normal University

It is true that the mathematics curriculum should be designed on the basis of the research
achievement in the fields of pedagogy, educational psychology, mathematics, etc., but the
importance of the social background, the traditional culture and the ethno-mathematics of the
country should not be neglected. Everyone, before going to school, has more or less been
nurtured by the traditional culture and the ethno-mathematics of his or her own country.

Therefore, it is plausible to argue that the .odernization of mathematics courses will be accelerated
if we can, in designing the curriculum, utilize the cream of traditional culture, make a rational
connection with the ethno-mathematics, and absorb its advanced ideas which are nowadays still
worthy of being popularized. This article attempts to observe, from the point of view of the
Chinese traditional culture, the present mathematics education in China, focusing on its advantages
and disadvantages and the origins thereof.

In talking about the influence of traditional culture, we should first of all clarify what we mean
by "culture." Here we follow Clyd Kluckhohn's definition that the essence of a culture is
composed of the notions and the value thereof handed down from generation tc generation; i.e., of
those formed in history and having survived the selection of history. Accordingly, the exploration
of a culture is, in the final analysis, that of the evaluational tendency maintained by those people
living in the culture. We have noted that China's traditional evaluation system is marked with four
obvious tendencies: having favorable attitude towards tradition, authority, official rank and self-
cultivation, which are still exerting great influence upon people’s thinking and behavior, although

they have only covered part of the evaluation system.
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1. The influence of the favorable attitude towards tradition on China's
mathematics education

The Chinese culture was originated in the Yellow River valley, and later on it gradually
expanded down to the middle and lower reaches of the Yangtse River. The natural screen almost
confined the living area of ancient China within a closed circle. Limited by undeveloped
transportation, the ancient Hans were mainly in contact with the culture of those minorities around
them. Compared with the culture of those minorities, the culture of the Central Plains at that time
was well developed. Take ancient mathematics, for example, as far back as the later period of the
primitive society, when our forefathers had already created the decimalism, and by the Spring and
Autumn Period and the Warring States Period (770-221 B.C.) at the latesi, "Suan Chou" (a bundle
of bamboo chips created specially as counters) had been widely used in calculation. This
advantageous number system and the calculating tool which was considered advanced at that time
enabled Chinese traditional mathematics to get a series of achievements in calculation which could
be ranked as first rate in the world. Mathematics, which was regarded as a nonessential
skill in China, could achieve such great success, to say nothing of other fields. It was no wonder
that the culture of the Hans was still venerated and upheld even during the time when China was
governed by minorities. Not until the end of the Ming Dynasty and the beginning of the Qing
Dynasty did China's traditional culture begin to encounter a great challenge. By this time, the
Chinese had already formed their evaluational tendency towards the high respect for tradition and
the faith in ancient conventions on the basis of the superiority and the sense of pride built up during
the past several thousand years.

It is the classic work Arithmetic in Nine Chapters that has exerted the greatest influence upon
the science of mathematics and its education in China. It has settled the traditional mathematics
style that is very useful in application and calculation. One may ask why people today are still
appealing for great attention to application in China's mathematics education, since the Chinese set
great store by the tradition which lays stress on application. Before answering the question, we
might as well take a scamper through Arithmetic in Nine Chapters. It illustrates solutions to more
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than two hundred questions about land area, exchange rate between goods, distribution by ratio,
square root and cube root, solid volume (which is useful in building dams or piling cereals), profit
and loss, line equation, and right triangle {Pythagorean theorem). Among them, some are out of
date and have been eliminated while others, as to questions about length, area, volume, and road
building, are still preserved and have occupied an important position in mathematics teaching in the
schools. Therefore, we can argue that it is not the case that the Chinese nowadays no longer have
high esteem for tradition. The fact is that now no new applied calculating methods have been
introduced to replace the eliminated ones.

The Chinese had a long tradition to judge a person to be a leamed man by his literacy works,
and to be a hero by his martial skill. Consequently, mathematics was not taken seriously.
Arithmetic in Nine Chapters was written in the form of "Question," "Answer" and "Algorithm,"
which can just meet the needs of those who me. .y want to apply mathematics instead of making a
further study of its theoretic aspect. Since they can manage with "algorithm,"” it seems unnecessary
for them to pay much attention to mathematics. In comparison with foreign students, the Chinese
students are superior in calculating, and they would rather pay attention to familiarizing themselves
with the skills that they have learned than to problem solving which may make it necessary for
them to cultivate a kind of originality. This harmful tendency may be due to the Chinese
mathematics style which is chiefly concentrated on the algorithm.

It cannot be denied that there is, to some extent, a connection between the monotone in
China's mathematics curriculum designing and its out-dated content on the one hand, and the high
respect for tradition on the other. The traditional school education in China always laid emphasis
on unification, the unificaticn of educational goal (to produce saints, worthies, gentlemen and
officials), of educational contents (chiefly the classical works of Confucianism), and of teaching
methodology (to read repeatedly and learn by heart). This traditional policy or education must be
changed because it is no longer workable in a modem society in which school education is open to

everyone.
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Influenced by the favorable attitude towards tradition, China's present mathematics teaching
still keeps the ancient mathematics tradition whici: was superior in calculation, and thereby students
can have a good command of fundamental knowledge as well as skills, which is essential in
developing their diverging thinking. We should not, however, over-emphasize the learning and
training of fundamental knowledge and skills; otherwise we might choke the students' thinking and
throttle their creative power. We should not, for instance, make our students spend too much time
doing repeated exercises, as is now done in schools, such as in the consultation of the logarithmic
table or the trigonometric table, the equality transformation, the calculation of the perimeter and the
area of a plane figure, or of the surface area and the volume of a cubic figure, etc. Instead, we
should make a kind of "spiral" arrangement which will gradually enable students to deal with them
through calculus. In China's mathematics curriculum, too much time is also spent in the repeated
training on trigonometric formulas and analytic geometry. Students would feel bored with this
kind of repeated exercises because they can get the results by themselves as long as they are patient
enough in dealing with them.

2. The influence of the favorable attitude towards authority on China's
mathematics education

China's feudal society stood basically in the form of a unified social structure. To maintain
the highly centralized feudal empire, it was necessary for the ruling class to adopt the concept of
hierarchy which was like a pyramid, with the emperor as the highest authority. Consequently, a
set of feudal ethics occupied a superior position in China's traditional education, which included
the three cardinal guides (ruler guides subject, father guides son, and husband guides wife), and
the five constant virtues (benevolence, righteousness, propriety, wisdom and fidelity). Long
influenced by these feudal concepts, the Chinese have gradually formed their favorable attitude
towards authority.

In the eye of the Oriental, the more one knows in a field, the more likely he ould become the

authority in that field. It's of no importance whether he can put forward original ideas. This type

158

oo

BEST COPY AVAILABLE




of criterion of judgment results in the fact that examinations in China have always focused on
remembering knowledge. Therefore, students would rather plunge themselves into a large number
of exercises so as to pass examinations than try to draw inferences about other questions

from one instance, or find new questions by changing the original conditions or conclusions.
They would be satisfied with finding a way to the solution instead of seeking the best way.

Another reflection of the favorable attitude tov-ards authority in education is the high respect
for teachers' authority. Teachers often unconsciously put the whole class under their way. In
class, students seldom have the chance to ask questions, or have discussions with their teachers
and classmates. Even after they become college students, a few of them are able to select, compare
and draw inferences when given a large number of materials or facts, let alone put forward original
viewpoints.

The favorable attitude towards authority is advantageous in encouraging students to build up
essential knowledge as the basis for the further comprehensive analysis and the cultivation of their
creative ability. To inherit, however, is to develop. So the ancient admonition, "one should go
from extensive study to intensive one and think while learning," remains instructive to mathematics
education today. And teachers should have it as their duty to teach their students how to study by
themselves, focusing on developing their self-confidence, initiative and independence.

3. The influence of the favorable attitude towards official rank on Clrina's
mathematics education

The patriarchy and its variant---hierarchy of authority is always very powerful and rigid in
China. The several thousand years' tradition to worship patriarchy and hierarchy, and look down
upon skills has made people come to the conclusion that, in the feudal society, only in the official
rank could one achieve great success and attain in the end the object of becoming famous and
bringing honor to one's ancestors.

How to secure an official position? Those who had the right to inherit could wait for

inheritance, and those who were wealthy enough could buy their official positions. The ordinary
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people, however, had to study hard to follow the Confucian doctrine: "a good scholar will make
an official." Children are usually too fond of play to concentrate themselves on study, so the
Chinese parents have had a long tradition to urge their children to study with diligence. A typical
example is the story of Mother Meng who removed her home three times so as to find a quiet place
where her son could concentrate his attention to studies. Such notions as "a good scholar will
make an official," "books contain wealth," etc., can still find their place in parents' minds
nowadays, and the only difference is that they have broadened the original meaning of the term
“Shi," that is, it not only means becoming an official, but also refers to leaving one's hometown in
the countryside to become a permanent resident in a city, or working in an office. For these
“official careers," people have to pass several entrance examinations. But at present the number of
the students being enrolled in middle (secondary) schools or universities is limited - hence the
fierce competition. In some cities like Shanghai, the competition for entering a university is not so
fierce, but one would meet quite an intense competition if one wants to be enrolled in a famous
university or major in a subject sought by many others. One may say that diligent study is out of
date now. It is true, but don't you see that at the same time, many parents begin to invest in their
children's preschool education? This indicates that, at first, parents all cherish the hope that their
children can study well. They won't give up their hope unless after several years' study, it is
impossible for their children to enter a higher school, and to continue them at school seems to have
no foreseeable benefit. Some people now would like to work abroad, engage in business, or have
a job in a city. Though they cannot thereby become "those who work with their brains” so as to be
an official "to rule others," they can, instead, bring honor to their parents by earning a large sum of
money to provide for their parents, just as the children of ordinary people did in the ancient time
after they became officials. Therefore, it would be plausible to say that the intense popular interest

in "going abroad," "engaging in business," or "working in a city" is also the reflection of the
favorable attitude towards official rank.

Though it is significant that the favorable attitude towards official rank results in the parents'
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attaching great importance to their children's preschool education, it is necessary to point out that

an inappropriate way of education may discourage their children's enthusiasm in their later studies.

The Confucian doctrine "a good scholar will make an official” played a positive role at that time
against the system of "enrolling officials by favoritism,” but it is not advisable for thz students
today to study just for the purpose of obtaining an official position. If our headmasters and
presidents of schools hold the same viewpoint, their schools aré likely to unfairly focus on
bringing up merely a few promising students at the expense of the ordinary students in the
majority. The favorable attitude towards official rank is also one of the reasons for the slow
development of the vocational technical education.
4. The influence of the favorable attitude towards self-cultivation on China's
mathematics education

The traditional education in feudal China centered on morality. It laid stress on developing
students' personality and ability of self-examination and self-restraint. This tradition has a great
influence on the Chinese today. The Chinese, for example, would like to deal with things on their
own. Most of them can steel their willpower and are used to studying behind a closed door. They
do not have the habit to discuss with others, let alone start an argument.

According to the comparative research made by H. W. Stevenson and others, American
teachers and parents usually relate the results in mathematics studies witk: students’ intelligence,
whereas the Asians have never attached importance to the intelligence difference among students
while believing that the difference in mathematics achievements is connected with students' study
attitudes and the time that they have spent in studies. As a matter of fact, the favorable attitude
towards self-cultivation has shifted most of the responsibilities of study onto the students; i.e.,
they must rely on their own effort to get good results. Yang Hui, a Chinese scholar in the
Southern Song Dynasty, worked out an "Outline for Arithmetic Exercises" for begi" - rs,in
which he suggests that students should learn “the multiplication table" first, then turn to study

multiplication and division which will last two months. After that they should learn addition,
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subtraction, and the transformation of multipiication and division into addition and subtraction,
then spend ten da-'s in calculating fractions and two months in reviewing, and finally learn
extraction for a week and do exercises thereof for twe months. Only with such fundamental
knowledge can the students begin to learn Arithmetic in Nine Chapters and explore mathematical
principles.

The mathematics teachers in China today usually believe that studems can begin to driil on the
subject after they have learned 60 or 70 percent of it. ‘They can gradually understand it during the
drilling. Take “the multiplication tabie" for example, the Chinese students are required to leam it in
the primary schools, and to familiarize themselves with it to the point that they shoul:l be able to
recite it with ease. Aithough most of them don't understand it while reciting, just like a little
Buddhist monk reciting scriptures. these pithy formulas of the table can take root ever since in their
mind, which they can benefit from all through their life. As tc the meaning of the formulas, the
students can gradually know it with the lapse of time. We don't think that it is sensible to abandon
this way of learning; on the contrary, we should encourage it. We cannot, however, accept some
ways of recitation. Take, for example, the principles of equivalent equation which are taught to the
first-year students in middle schools. Though these principles are the basis of sclving equations,
what's the point of forcing the junior students to recite them while they have just met linear
equations and know nothing about the solving procedure? MNone of them would be likely to
multiply zero at both sides of the equation in solving a linear equation.

Every Chinese student knows the stories about "the Foolish Old Man who removed the
mountains” and "an iron pestle which can be ground down to a needle.” They firmly believe that
quantitative change will finally lead to qualitative change. The precious Chinese spirit to study
diligently and train hard is one of the importan* reasons why the Chinese competitors can often beat
their rivals in international competitions. It's not sensible, however, to study mathematics through
exercises alone. Constant reflection 1- necessary and much attention should be paid to stady

efficiency. Those who throw themselves into introspection and refuse to be in contact with others
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can hardly keep pace with the times.

As seen from the above observations, the Chinese traditional culture can have both a favorable
and an unfavorable influence upon the development of today's education. How can we make the
best use of the advantages and bypass the disadvantages, and how can we learn from the strong
points of other countries, and then reform mathematics education in China and conform to the trend
of the world and the spirit of the times? This is a very attractive and large topic to be explored by

more people.
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OUTLINE OF TEXTBOOK AUTHORIZATION IN JAPAN

Toshiaki Sakama

Bunkyo University

1. School Textbooks in Japan

In accordance with the provisions of the School Education Laws today, all elementary and
secondary schools in Japan are required to use textbooks in the classroom teaching of each subject.
As 2 principle, these textbooks must be authorized by the Minister of Education, Science and
Culture. As a matter of fact, most of the textbooks currently used in schools are those published
by commercial publishers and are authorized by the Minister.

Before World War II, textbooks compiled by the Government were used in elementary
schools, and authorized textbooks were used in secondary schools. The current system of
textbook authorization was adopted after the War and the Educational Reform. The "authorization"
of textbooks means that, after examining "proposed"” textbooks written and compiled by authors or
publishers, the Minister approves those which are deemed suitable as textbooks for use in the
schools. Authorization aims to encourage non-governmental bodies to exercise their own initiative
and creativity in writing and compiling textbooks. It is also intended to easure that scho<is use

only appropriate textbooks.

2. Aims of Textbook Authorization

The Ministry sets the Course of Study (the national standards for the school curriculum) for
each of the eiementary, lower secondary, and upper secondary levels. The Ministry is responsible
for the authorization of textbooks so that all textbooks may be compiled in accordance with the
Course of Study. Through these activities, the Ministry aims to meet the demands for the
improvement of educational standards throughout the country, for the provision of equal
educational opportunity for all, for securing the appropriate cont=nt of teaching in the schools, and
for ensuring neutrality in education.
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According ro the provision in the Constitution, that "compulsory education shall be free,” the
government has been supplying textbooks free of charge to all children in compulsory schools

since 1963.

3. From Compilation to Distribution of Textbooks
It takes about four years from the stact of the work of compiling a textbook to the time that it is
distributed among school children. The existing systems for the compilation, authorization,

adoption, production, and distribution of textbooks are outlined below. (Chart 1 illustrates the

whole process.)

[ ChartI] CYCLE OF TEXTBOOK AUTHORIZATION
First year Second year Third year Fourth year
Aprii  March May August March April March
|

Corpilation| | Autherization Adoption Production Use
Textbook ™ Minister of r Local boards ! Textbook {*| Children
publishers Education, of education, publishers

Science and or school and

Culture principals distributors

(1) Compiiation of Textbooks

School textbooks are written and compiled by non-governmental textbook publishers. They
compile the textbo_ks, with their own initiative and creativity, in light of the provisions in the
Course of Study for each school level. After compiling the books, they request the Minister of

Education, Science and Culture to authorize these textbooks.
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(2) Authorization

The Minister of Education, Science and Culture examines each of the "proposed iextbooks” to
judge whether it is appropriate for use in the schools.
(3) Adoption
The power to adopt textbooks to be used in local public schools rests with the local board of
education that supervises these schools. On the other hand, the power to adopt textbooks for use
in national or private schools rests with the principal of each of these schools.
(4) Publication
On adopting particular textbooks for different subjects, the local board of education or the
principal of a national or private school submits to the Ministry the total number of copies of the
respective textbooks that are needed for the municipality or for the school. The Minister then
calculates the total of the demands for all textbooks, and then instructs individual publishers to
print a specific number of copies of the respective textbooks.
(5) Use
Textbooks are delivered to each schoel by the publishers and are given to all the children. At
the present time, mathematics textbooks for compulsory schooling are published by six publishers
(six textbooks); the texts for the upper secondary schools are published by twelve publishers

(twenty three textbooks for each subject).
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4. Procedures for Textbook Authorization

Chart I illustrates the procedures for textbook authorization.

[ Chart 1I']

PROCEDURES FOR TEXTBOOK AUTHORIZATION

Textbook Authors or Publishers

(1) Application
for
authorization

*

(5) Informing
of the
Ministry's
decision

(6) Svbmitting A (9) Informing of

proposed

revisions

the Ministry's

decision

v

(10) Submitting
final
version of
proposed
textbooks

Minister of Education,
Science and Culture

Textbook examination officers

(2) Examination of errors in the proposed textbooks

3 members

(2) Asking $(4) Submitting | (7) Submitting* (8) Submitting the Council's
the Council the proposed report to the Minister
to examine Council's revisions
the proposed report
textbooks
Y
Textbook Authorization Part-time
Subcommittee of the textbook Panel 3 (mathematics) textbook
Authorization Council 7 members examiners

Gn receiving applications from publishers for the authorization of their proposed textbooks,

(1) the Minister instructs the textbook examination officers to examine the books for errors and

mistakes in the content, and (2) then asks the Textbook Authorization Council to examine the

appropriateness of each of the textbooks (3). The Council examines each of them in the light of the

Criteria for the Examination of Textbooks laid down by the Ministry, and judges whether it is
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appropriate for use in the schools. The results of the Council's examination are reported to the
Minister (4). On the basis of the report of the Council, the Minister approves or disapproves each
textbook (5).

When the Council deems it appropriate to re-examine particular textbooks after the relevant
revisions are made in their content, the Council defers its conclusions for these textbooks, and
through the textbook examination officers, informs authors of its comments. Authors or
publishers may revise the texts in accordance with the Council's comments and submit specific
tables of revisions to the Minister (6). On receiving these tables, the Minister will ask the Council
to examine the revised draft textbooks (7). The Council will report the results of its re-examination
{0 the Minister (8). On the basis of the Council's report, the Minister will make the decision on the
approval or disapproval of the revised drafts (9). On receiving the notice of approval from the
Ministry for the textbook, the author or publir her will prepare the final version and submit a few
sample copies of it to the Minister (10). After completing the whole textbook authorization

process, the Ministry may make the proposed textbooks open to the public.

5. Criteria for Examining Textbooks

For the purpose of the examining whether each proposed textbook is appropriate for use in the
elementary and secondary schools, the Ministry has set forth Criteria for the examination of
textbooks for coinpulsory schooling and for the upper secondary schools.

The following Criteria are common to all subjects:

[Scope and Level of Textbooks]

(1) Every textbook for each subject should adequately deal with all items presented in the

Course of Study, and should not deal with such items as are unnecessary.
(2) The content of every textbook should be relevant to the levels of the physical and

psychological development of children.
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[Selection, Construction, and Amount of the Content]

(1) Every textbook should choose the content in accordance with the Course of Study.

(2) Every textbook should be impartial with regard td political and religious aspects. It
should be neither partial nor prejudiced to particular political parties or religious
denominations, nor to their principles or beliefs.

(3) No textbook should carelessly present one-sided views.

(4) The amount and construction, and relations between the contents, should be appropriate.

[Accuracy of the Contents; and Appropriate Expressions]

(1) No textbook should contain wrong, inaccurate or inconsistent statements or expressions.

(2) No textbook should contain those expressions which may be beyond children's
understanding, or which may be easily misunderstood by children.

(3) No textbook should contain inappropriate expressions.

Further, two special conditions for Mathematics are the following:

(1) No textbook should contain the content of higher grades with regard to the Course of
Study.

(2) No textbook should incline to obtain knowledge of theorem or formula and skills of
calculation.

Textbook examination officers of the Ministry (for Mathematics there are three persons) are
selected from among those experts who have teaching experience at the university level or at other
educational institutions. The Textbook Authorization Council consists of panels for each subject.
The members of the mathematics panel (Panel 3) are four selected persons from professors at
universities and three teachers at the elementary and secondary school levels. The part-time
textbook examiners are appointed by the Minister. They are selected from professors at the
university level and teachers at the elementary and secondary school levels.

The result of the examination by the textbook examination officers and the part-time textbook

exarniners is reported to the Council for its consideration. The Council makes the judgment as to

169

}-—-z\
[




whether each proposed textbook is suitable for use in the schools. After due consideration of the
reports by the examiners and the results of the examination by the Council members themselves,
and based on the recommendation of the Council, the Minister approves or disapproves each of the
proposed textbooks. The various opinions of specialists and knowledgeable people are reflected to

the consideration of the Council.

3
]
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PROBLEM SOLVING AND LESSON REVIEWING --

A CAI teaching approach

Shen Yu

People's Education Press, Beijing

Pengyuan Wang
Attached Middle School to Beijing University

Zhong Dai
Attached Middle School to the Steel and Iron University

According to a traditional Chinese proverb that reviewing the past helps to gain new
knowledge, combined with experiments and developments of school mathematics in CAl, we
intend to investigate the relations between problem solving and lesson reviewing.

Recently, we developed the softwares CAI--1,2,3, that will be available to help students'
review of the Pythagorean Theorem (Gou-Gu-Xuan Theorem). The software divided the
reviewing process into three steps:

1. To prove the Pythagorean Theorem by means of the principle of "addition and deletion

are compatible" as well as the congruent transformations.

2. To indicate various applications of the Pythagorean Theorem in the plane (space)
configuration.

3. To transform the squares made by the three sides of a right triangle into other
configurations, respectively, but withcut changing the area relationships of the three
sides; i.e., the Gou-area plus Gu-area equal the Xuan-area.

For the purpose of reviewing the Pythagorean Theorem at the third step, we designed some

problems by which pupils are able to gain new knowledge through the review process. For

example, by using adequate rectangles, lozenges, parallelograms and trapezoids in place of the
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squares that appear in the Pythagorean Theorem, one can show that the Gou-Gu-Xuan area relation
still holds. The software displays the changing process well.

Furthermore, we ask pupils to develop new patterns, such as Gou-Gu equilateral triangle,
Gou-Gu general triangle, Gou-Gu semi-circle, Gou-Gu hoop, Gou-Gu pentagon and so on. In
short, the essential difference between reviewing with problem solving and traditional reviewing is
the Chinese proverb: "Reviewing the past helps to gain something new." Our work is an example

in CAI only.
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CHANGING THE ELEMENTARY MATHEMATICS CURRICULUM:

OBSTACLES AND CHALLENGES?®

Susan Jo Russell

Technical Education Research Center

Problem-solving in the U.S. Elementary Curriculum: Some History

There has been an evolution in the definition of what an appropriate problem is for students
ages 6-11. For many years in the U.S., problems for elementary age students consisted of
disembodied r.imbers and operations. A typical textbook would consist of pages and pages of
addition, subtraction, multiplication, or division problems. The underlying assumption seemed to
be that if students did many, many problems of a certain type, they would understand how to do
that kind of problem. Emphasis was on followirg one prescribed rote procedure for the indicated
operation and getting the correct answer. Students were not expected to estimate or to use what
they knew about the structure of the number system and the relationships among the numbers to
help them solve the problems.

Textbooks have also typically included what we call "word problems" in the U.S.; for
example:

Joan and Jere went to the beach. Joan found 19 shells and Jere found 12 shells. How

many shells did they find altogether?

Some people identify such word problems as "problem solving." However, many of these
word problems are nothing r:ore than computation practice, just like the pages of numerical
problems. When the central focus in the mathematics classrcom is on using a prescribed procedure
to find the correct answer, we find that students ignore the context in such word problems. They
extract the numbers from the problem and use some operation on them—not necessarily the correct

one. We have seen 8- and 9-year-olds who, rather than reading the problem, simply try every

9 The work reported in this paper, was supported in part by the National Science Foundation, Grant
No. MDR 9050210. Opinions expressed arc thosc of the author and not necessarily those of the foundation. This
paper is based on an carlier paper prepared for the University of Chicago Mathematics Education Conference.
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pos¢ ble operation with the numbers in the problem until they get an answer they think is
reasonable. Rather than making sense of the problem by drawing a picture or making a model,
they look for key words (such as "altogether” in the problem above) which will seem to indicate
which operation is correct. Pcrhaps this is because they recognize that the problem is not a "real-
life" application as it claims to be, but simply slightly disguised computation practice.

Educators who teach young children began to reassess the nature of the problems that young
children encounter in their mathematics classes. Early childhood educators have long recognized
that young children are engaged in the task of making sense of the world around them—sorting,
classifying, naming, sequencing, comparing. A strong movement to make mathematics more
"relevant” to students' own lives began to influence the nature of the problems given to students in
the elementary grades.

Problems we.e formulated to be more "realistic” or to use "real data.” However, when these
efforts did not include reassessing the goals of mathematics education, even these efforts continued
to generate what young students quickly recognized as phony mathematics. Consider, for
example, a problem from a textbook in which students are given the length in miles of the world's
seven longest rivers and are asked to find the average length of these rivers. While the data are
"real" and the length of the rivers is potentially interesting to young students, the problem itself is
silly. Why would we want to know the average length of these seven rivers? Students recognize
that the problem is contrived—again in order to give them practice in demonstrating that they can
use a particular algorithm.

The almost excinsive focus on learning rote procedures for operations with wiiole numbers,
fractions, and decimal. in the elementary grades led to several serious and unfortunate resuits.
First, many students emerged from the elementary years with a dislike for mathematics that lasted
into their adult lives. Their belief that they were not "good at math” led them to avoid taking
mathematics courses beyond the minimum requirements. Mathematics became a barrier which

filtered out far too many students from careers that requirc a good grasp of mathematics. Second,
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many students, including those who were successful in school mathematics, never developed an
appreciatior: for the beauty, order, and pattern found in mathematics. They saw mathematics only
as a way to solve individual problems, rather than as a way of thinking that involves making
conjectures, finding patterns, examining the characteristics of mathematical objects, and using
examples and counterexamples to test hypotheses about mathematical relationships. Third,
students saw “school math" as a collection of arbitrary procedures disconnected from their own
knowledge and experience. Students discarded their own sound intuitions and good number sense
as they learned that their own thinking was not sought in the mathematics classroom.

In many elementary classrooms—and this is still true today—the place of the algorithm in the
larger endeavor of doing mathematics became distorted. Memorization and use of particular
algorithms became the whole aim and purpose in the mathematics classroom. Rather than
developing a sound and deep understanding and appreciation of the number system, teachers and
students believed that one was doing mathematics when reciting the chant,

!
26

+36
62
"6 and 6 is 12, put down the 2 and carry the 1; 1 and 2 is 3, and 3 is 6." It is well documented that
when such algorithms are taught very early, without firm grounding in the structure of the number
system, young children tend to focus on the procedures of manipulating individual numerals in a
prescribed way. They no longer think about the quantities 26 and 36 and the relationships between
them. Mistakes made through blind application of rote algorithms tend to go unnoticed by the

students, and estimation is not used to predict or check results. When students learn to use

algorithms in this way, we often see errors such as

27

+27  or 63
27 - 37
71 34

that result from misapplied or misremembered algerithms.
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When students do pages and pages of similar addition problems, following the rules they had
learned for addition, they are not engaged in problem solving, but in remembering and using an
algorithm over and over. While I am certainly not making an argument here that aigorithms are not
useful—they are, of course, extremely useful tools—I am arguing that the blind, repetitive use of

algorithms is not doing mathematics.

Towards a New Elementary Mathematics

During the last ten years, the mathematics education community in the U.S. has been
reexamining the nature of mathematical problem solving for young children. With the publication
of the National Council of Teachers of Mathematics' (1989) Curriculum and Evaluation Standards,
the comumunity has come together around new objectives for the elementary classroom. The focus
in the elementary classroom is shifting towards an emphasis on mathematical reasoning and
problem solving in a true sense—thinking mathematically in order to solve a problem that you do
not know how to solve. In this view, what makes a problem a problem is that it is problematic for
the person engaging in trying to solve it. Further, the Standards and other current reform
documents (e.g., National Research Council, 1989, 1993) emphasize that in order to solve
problems, students must learn to describe, compare and discuss their approaches to problems.
Alternative strategies are valued, and multiple strategies—rather than a single, sanctioned
approach—are encouraged. In order to learn, students must learn from each other, as well as from
the teacher's questions. They must communicate about their mathematics.

Mathematics classrooms are changing. In the old style of an elementary mathematics
classroom, students

¢ work alone

focus only on getting the right answer

record only by writing down numbers
« complete many problems as quickly as possible
« use a single, prescribed procedure for each type of problem.
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In the mathematics classrooms many educators are now striving to create, students
» work together
* consider their own reasoning and the reasoning of other students
* communicate about mathematics orally, in writing, and by using pictures, diagrams, and
models
* carry out one or two problems thoughtfully during a class session
* use more than one strategy to double-check.

Many elementary school teachers are eager to change their classroom practices in order to
engage their students more deeply in mathematics. However, most elementary teachers have not
themselves had sound mathematics training and experience. One of the biggest tasks we face in the
U.S. is the development of elementary teachers in mathematics. One of the critical needs these
teachers currently have is for new curriculum materials that can help them learn mathematics

content and pedagogy as they are teaching their students.

New Curricula: Goals and philosophy
The National Science Foundation has funded about a dozen new curriculum projects to

develop curricula at the elementary, middle school, and high school level. At TERC10, we are
working on one of these projects, a curriculum for kindergarten through grade 5 called
Investigations in Number, Data, and Space. The major goals of this K-5 curriculum effort are to:

» offer students meaningful mathematical problems

* emphasize depth in mathematical thinking rather than exposure to a series of fragmented

topics
» communicate mathematics content and pedagogy to teachers

* serve as a tool for radically expanding the pool of mathematically literate students.

10 TERC is a nonprofit company located in Cambridge, Massachusetts that works to improve mathematics and
science education. TERC's projects include research on children’s understanding of mathematics or science, research
on teacher development, and development and implementation of curriculum materials, staff development materials,
and new software and technological tools for use in educational settings. The letters T-E-R-C no longer stand for
anything.
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The Investigations curriculum embodies an approach radically different from a textbook-based
curriculum which leads students through 50-100 separate topics, most of which involve only basic
arithmetic processes. Rather, this curriculum consists of a set of eight to ten units of work at each
grade level. Each unit offers a set of connected investigations that focus on major mathematical
ideas within the areas of number (including operations, computation, number patterns, and number
theory), data collection and analysis, geometry, and the mathematics of change. Besides offering
significant mathematics content, the investigations encourage students to develop flexibility and
confidence in approaching mathematical problems, proficiency in evaluating solutions, a repertoire
of ways to communicate about their mathematical thinking, and enjoyment and appreciation of
mathematics. Because we see teachers as the primary audience for this curriculum, the materials
are addressed directly to them and include notes on mathematical ideas and dialogues from
classrooms designed to support teachers in learning more about mathematics and about children’s
mathematical thinking. The project has also developed assessment tools, videotapes for teachers,
and computer environments that support this approach to mathematical investigation.

We want students to:

« develop fluency in approaching mathematical problems. Students must gradually acquire
a repertoire of mathematical tools, processes, and approaches which they can use flexibly
to solve problems. These include specific knowledge of number relationships, “number
facts," and algorithms (these algorithms are developed by the children themselves),
geometric relationships, ways of organizing and representing data using a variety of
graphs, charts, tables, pictures, and concrete objects, knowledge of calculator use, and
facility with mental arithmetic.

« evaluate their solutions to mathematics problems. In order to look at the reasonableness of
their results, students must develop skills in estimation and have a solid foundation in the
structure of the number syst~m and the ouicomes of arithmetic processes as well as

experience with spatial relationships. We want students to know that an answer is correct
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"not because the teacher says it is, but because its inner logic is so clear [National
Research Council, 1989, p. 3]." This inner logic will only be apparent to the student who
is well grounded in the structure of the number system and of geometric relationships.

* communicate about their mathematical work. In order to think about their mathematical
work, students must keep track of their approaches and strategies for solving problems.

' Xeeping track” in mathematics is, we find, a process far from the experience of most
elementary students. Without keeping track of their own work, they are unable to
describe it, evaluate it, change it, or talk about it with others. We expect students to
develop a large number of strategies for keeping track; through their writing, sketching,
drawing, charting, graphing, students communicate with peers, with the teacher, and with
their own thinking process.

* enjoy and appreciate mathematics. If students are to use mathematics, to continue
studying mathematics beyond minimum requirements, and to maintain a lifelong curiosity
about mathematics, tiley must come out of school with a sense of mastery of and
appreciation for the pov =r and beauty of mathematics. This affective component of
mathematical learning in the elementary school is critical and is closely tied to the view of
mathematics which is communicated to students in school.

We want to make sure that students are involved in investigations that involve number,
geometry, and data. Traditional elementary curricula have included very little work with geometry
or data, and we want to make sure that there is significant work in these areas at every grade level.
We have also become interested in the mathematics of change—ideas that lead to calculus but that
are accessible to young students—and are including a unit focused on change at each grade level as

well.

Curriculum as Teacher Development
We see our curriculum as a vehicle for teacher development. The actual curriculum is not
what we envision and write down, but what happens between students and teachers in the moment
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of teaching and learning. So, while part of our responsibility is to provide the material, the actual
investigations in which students will participate (and this in itself is no easy matter), the other
equally critical part of our responsibility is to oper up that material to teachers, to invite them into
both the mathematics and children's mathematical thinking.

The audience, ti.ecrefore, for our materials, is teachers, not students. Our units are written 1o
the teachers with many digressions about mathematics and about children's learning of
mathematics. T'ie responsibility is absolutely on the teachers to make this material work. If they
fail, the material fails. On the other hand, by not making teachers partners in the past, we have
made a grievous error. By not inviting teachers into mathematics, by attempting to make materials
"teacher proof," because educators or mathematicians believed that classroom teachers were not
smart enough about mathematics to teach it, not only have we denied the students a good
mathematical education, but we have denied generations of elementary teachers—Ilargely

women—access to mathematics.

The Complexity of Apparently Simple Ideas

In order to open up mathematics to teachers of young children, our materials need to open up
the complexity of apparently simple ideas to teachers.

A key issue in the elementary school for teachers—in all subjects, not just in mathematics—is
that adults think that the ideas that are taught in these grades are simple. One of the factors that has
made it sc difficult for teachers to be recognized as professionals—and this is more true at the
elementary level, where teachers are not subject matter specialists—is that everybody thinks it is
easy to teach what students need to learn in these grades. After all, don't we all know how to
count and how to add and subtract?

What is not understood by many people outside the schools, as well as by many inside them.
is the complexity of these apparently simple ideas, both for the students and as they relate to
mathematics. Here are three examples:

Elise, a sixth grader, was easily able to "find the average" of the grades on her
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spelling tests for the previous four weeks. However, when asked to answer the
following question, "What would you have to score during the next four weeks to
get an average of 90?" she was baffled. She said, "] know how to find the average
but I don't know how you find the numbers that go into an average." While Elise
is right, in some sense, that you do not know the particular set of numbers that "go
into an average," further questioning revealed that she had no idea how to describe
any possible data sets represented by this average. As adults we, in fact, most
often meet averages in this way—we encounter the average, not the data. We must
use our understanding of what an average represents to imagine what the data can
be iike. Elise's procedural understanding of average leaves her quite unprepared
for dealing with the concept of average in the real world.

Gayle's third grade students were exploring multiplication patterns by skip-
counting on a hundred number board. After students had counted by twos on the
board—coloring in 2, 4, 6, 8 . . . up to 100—Gayle asked her students to de .cribe
the patterns they saw. "It's the even numbers," declared one child. "The even
numbers—what can you say about even numbers?" After some further discussion
about what "even" might mean, Jorge said, "the even numbers are the ones that
have no middle." "No middle? Show us what you mean." Jorge came up and
sketched three vertical slashes. circling the middle one. Underneath he drew two
vertical slashes, not circling any. "See, three has a middle—it's not ‘an even
number. But two doesn't have a middle. It's even." Gayle asked, "What do you
all think about Jorge's conjecture? Can an even number have a middle?" Students
were soon busy building even and odd numbers using connecting cubes and
exploring what the middles of these numbers might be. While as adults we might
assume that what Ricky said was "obvious," these beginning third graders were

genuinely engaged in deciding what the middle of a number like 26 might be. They
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were beginning an investigation of critical ideas about the structure of numbers,
which might lead on to muny kinds of conjectures about number relationships.
Carol's fourth grade students have certainly had many exposures to triangles
during their four or five years in school. However, as Carol ran a discussion with
her class which probed deeper into their knowledge, she found that many students
had images of a prototypic triangle, usually equilateral and with one side parallel to
the bottom of the page on which it was drawn, which restricted their views of the
properties and relationships of triangles. For example, when she asked students to
sketch various triangles with a perimeter of 12 centimeters, most students quickly
drew an equilateral triangle with sides of 4 centimeters, but had great difficulty
visualizing and sketching others. Some students sketched a triangle with sides of 6
centimeters, 4 centimeters, and 2 centimeters. Even when questioned hard about

how this triangle would be constructed, many students insisted it could be done.

Illuminating Critical Mathematical Issues in the Curriculum

In all of these cases, teachers need information both about the mathematics itself and about the
ways in which students grapple with the mathematics. What do we do about this in a curriculum?
We can illuminate critical mathematical ideas. We can describe patterns of student learning,
patterns of the ways in which students respond as they struggle with complex ideas. We can help
teachers recognize ways in which we have seen many students respond, informal ideas that we
have seen many students use, confusions that we have seen many students exhibit. Because we
have extensive classroor data from our field tests, we are able to incorporate the experiences of
many teachers and students into the final version of the materials through Teacher Notes (notes on
the mathematical ideas and how students learn them) and Dialogue Boxes (examples of classroom
interactions and issues that arise during thein). For example, a Teacher Note called "Three
Powerful Addition Strategies" is intended to help teachers (who themselves learned to add only by
using the traditional "carrying" algorithm) become aware of other mathematically sound approaches
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to addition that their students may develop. Dialogue Boxes throughout the units give teachers
examples of discussions we have recorded in classrooms where students are encouraged to 'share
their computation strategies. These teacher materials offer glimpses into students' mathematical
thinking, highlight critical mathematical issues that are likely to arise, and provide information
about mathematical content that teachers may not have encountered or thought about deeply.

Th.ough opening up the complexity of early mathematical ideas to teachers, we hope to
engage teachers as researchers in their own classrooms. We hope our curriculum will help
teachers to pay closer attention to what their students say and do as they are engaged in solving
mathematical problems. For a classroom teacher, this most often means asking questions designed
to illuminate the way in which students are thinking about a mathematical idea. By asking the
question, "What can you say about even numbers?," Gayle showed interest in the deeper thoughts
of her students. She wondered what the meaning underneath their words really was, and did not
take for granted that all her students meant the same thing as she did when they used mathematical
terms. Opening themselves up to the complexity of students' thinking can be disconcerting for
many elementary school teachers. When they ask their students to think mathematically rather than
simply repeat what they have been told, it often becomes clear that students know a lot less than the
teacher thought they did. The teacher who conducted the conversation about triangles was appalled
at how little her fifth graders knew. Further, the teacher begins to understand how truly
heterogeneous her students are and how difficult it is to tailor learning experiences to meet all the
needs in her classroom. Reading accounts drawn from other ieachers' experiences and beginning
to become fariliar with patterns of student responses help not to make every student an isolated

case.

What New Curricula Provide for Students

Besides providing new models for teachers, curriculum must, of course, provide substantive
mathematical experiences for students. There are two needs in developing elementary curriculum.
One is to find appropriate, engaging problems for children at this age. The other is to develop a
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pedagogy in which the emphasis is on the development of a mathematical frame of mind. The
focus for young children, as in later mathematics, must be on thinking and reasoning
mathematically.

Redefining work with number. If this is to be the case, work with number must be redefined
and refocused in these new curricula. First, much more emphasis must be placed on developing a
sound understanding of the structure of the number system and reasoning about number
relationships based on this knowledge. For example, many children who have learned rote
procedural approaches to solving problems solve the problem 1000 — 3 using the cumbersome
method of "borrowing." We want children to reason from their knowledge of the place of 1000 as
an important landmark in the number system. When students envision where 1000 is placed in the
number system, they can easily count backwards from 1000 to 997.

Similarly, current research on young children developing their own strategies for addition and
subtraction shows that children naturally add from left to right, dealing with the larger portions of
the numbers first, rather than adding from right to left as we do when using the traditionally taught
algorithm. Adding from left to right, students more readily retain a sense of the magnitudes of the
numbers involved and are more likely to consider what a reasonable result might be.

Students make more use of prediction and estimation when they are encouraged to reason
about numbers. For example, 8-year-old Anna reasoned in the following way as she solved the
problem, "how many dollars do I need to give to the supermarket clerk in order to pay for potatoes
that cost $3.45 and ice cream that costs $3.69?" Anna reasons, "Three dollars and three dollars,
that's already $6.00. Then I round 69 cents to 70 cents. Iknow that 70 cents and 45 cents is
already over a dollar. 40 cents and 60 cents is another dollar, so that's seven dollars. and five and
nine go over, so I'll give her $8.00."

Finally, work with number should not be limited to work with operations. We w ™ t students

to understand number as a way of describing relationships in the real world, but we also want them

to encounter the purely mathematical (what patterns can you find in a 10X10 array of the numbers 1
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to 100? How can you find the sum of all the counting numbers between 1 and n without adding
cach number? What is the tenth row in Pascal's triangle? What is the relationship between two
consecutive square numbers?). Number relationships are in themselves fascinating objects of
study. We want students to experience, appreciate, and be fascinated by the patterns of number
and, on occasion, to catch glimpses of the quite surprising ways in which the purely mathematical
turns out to fit reality (e.g., the occurrence of the Fibonacci sequence in nature).

Number theory offers a rich and accessible domain for exploration by young children. For
example, second and third graders can become immersed in the study of the characteristics of odd
and even numbers. In traditional mathematics classrooms, students learned to define even and odd
numbers, but never spent time exploring how these numbers behave. In a third grade classroom
working with our curriculum materials, students studied what happens when two even numbers
are added together, or two odd numbers are added together. They drew pictures and used their
knowledge of the structure of these numbers to develop statements that two even or two odd
numbers would always result in an even number. When the question was posed, What would
happen if you add an odd number to an even number?, students were eager to generate their own
examples and develop informal proofs of their conclusions by referring to the structure of odd and
even numbers. Most students reasoned from their knowledge that when the odd number is added
to the even nuinber, there is always "one extra" that is not paired, so that the result is an odd
number. However, one student had a more unusual solution: "When we added two even
numbers, the answer is even. When we added two odd numbers, the answer is even, too. So,
when we add an odd and an even, the answers have to be odd, or else there wouldn't be any odd
numbers."

By working with numbers in this way, students do real mathematical thinking—developing
and testing mathematical conjectures, exploring the relationships among mathematical objects,
using examples and counterexamples—not just solving a probler given by the teacher and coming

up with the right answer.
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Expanding the domain of mathematics to include work with data and geometry. While
number has been the traditional center of the elementary curriculum, we believe that young students
should also be doing substantial work in data analysis and geometry. Students in the elementary
grades have experienced a very restricted view of mathematics as a discipline. To the elementary
student, mathematics is arithmetic. Students in this age group can also be fruitfully engaged in
collecting, representing, and describing data and in manipulating, visualizing, and reasoning about
geometric objects.

Geometry, as the study of spatial objects, relationships, and transformations, is an essential
component of mathematics. Geometric representations are essential for understanding such topics
as functions and calculus (Balomenos, Ferrini-Mundy, & Dick, 1987) and, through measurement,
geometry serves as a major source of practical applications of numerical concepts. As important as
geometry proper is spatial thinking. Hadamard argues that much of the thinking that is required in
higher mathematics is spatial in nature, and Einstein's comments on thinking with images are well
known. Investigations in geometry and measurement provide opportunities for students to
mathematically analyze their spatial environment, to describe characteristics and relationships of
geometric objects, and to use number concepts in a geometric context.

Data collection and analysis is a critical skill in an information-rich society. From the earliest
grades, students can collect, display, describe, and interpret real data so that they learn to become
critical users of data and graphs. Students need to pose their own questions, collect data, critique
and refine their own data collection methods, compare different ways of displaying their data, and,
in the later elementary grades, learn to use appropriate statistical measures (Russell & Corwin,
1989: Russell & Friel, 1989). Research on students’ understanding of statistical ideas in the
elementary grades indicates that, just as in work with number, premature focus on memorization of
definitions and algorithms (such as the algorithm for calculating the mean) undermines students'
learning to make sense of a set of data. Just as students pull numbers out of "word problems" and

manipulate them blindly, they pull numbers out of data sew» and carry out calculations that no
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longer have meaning to them in terms of the data then.selves (Mokros & Russell, in press). The

elementary curriculum must include many opportunities for students to describe, analyze, and
interpret a variety of data sets so that they begin to understand how data analysis can provide

important information about a variety of populatiors.

Teacher Education: A Central Issue for Reform

In order for this reform of the elementary mathematics curriculum to work, we have . assive
Jjob to do in reeducating and supporting teachers as they attempt to expand and deepen the content
of their mathematics program and to develop a pedagogy in which students are challenged to think
mathematically (Ball, 1991; Russell & Corwin, 1993; Simon & Schifter, 1991). There is no
question that we would prefer to see our curriculum used in the context of a strong, long-term staff
development program. In fact, we know that a curriculum cannot provide all the necessary
elements of such a program. One in particular—-the opportunity for teachers to do mathematics
together, at an adult level, on a regular basis, and to reflect with peers about their own learning of
mathematics and its implications for their teaching—cannot easily be included in a curriculum.
However, new curricula can be one of the tools that support teachers as they rethink their
mathematics teaching. Insofar as these materials can invite teachers into mathematics and into the
world of student thinking about mathematics, we believe they can help teachers open the doors of

their classrooms to serious mathematics.
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ON THE METHOD OF GUIDING EXPLORATION

Benshun Xu & Jiying Li

Houzhen Institute for Mathematical Education

§1 INTRODUCTION

To solve a problem, it is quite important to cultivate the student's ability for exploration.
Scientific research is an activity of exploration. The nature of science lies in perpetual exploration
(Just like a search-light that always throws the light beam of research to the far unknown field),
pursuing, trying, guessing and seeking. The pathway to research is rugged, rough and endless.
Science is a glorious exploration of humankind's soul; that is to say, scientific cognition can't be
separated from research thinking. To meet the needs of training talented students for national
construction, it is necessary to cultivate the explorative ability of these students. In teaching
modern mathematics, a coming agenda is to develop students' capacity to explore. We feel that
this must be under the guidance of the teacher. How can the teacher guide students to explore?
The student is consistently in the initial position in the course of open teaching, while the teacher is
in the guiding position - the teacher must adroitly provide guidance according to the circumstances,
neither taking on what ought to be done by the student, nor taking a laissez-faire attitude for the
student to think in a way that digresses from the objective. The teacher must design the problem
situation and buiid the relation towards the knowledge that the students must grasp. We think that
the teacher has to infer the correct conclusions from the student's incorrect answers and also the
main concepts from the student's confusing ideas in order to seek a reasonable way to proceed
from disorderly complicated thinking and to ascend progressively from comparatively concrete
perceptual knowledge to abstract rational knowledge. The topic, "An Ideal Method of Developing
the Formula for the Area of a Trapezoid," is a designed example for "A Method of Guiding

Exploration” for the student who has studied the equiform triangle.
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§2 PHILGSOPHY OF DEVELOPING THE FORMULA
FOR THE AREA OF A TRAPEZOID

The teacher, together with the students, devises the method of developing the formula for the
area of a trapezoid. The teacher guides the students to think and respond, and then surmmarizes
their thinking. The main steps of the teaching are explained as follows (T represents teacher, S
represents student).
1. Analogy

T: (calls S1'by name) Please develop the formula for the area of a trapezoid.

S1: I forgot how to do this.
T: How about the formula for the area of a triangle?

S1: Build up another triangle with the same size and area to form a parallelogram, then reduce

Pt P o e i i L

it by half, then you get the formula for the area of a triangle.
Now the teacher shows diagram 1, supposing the height to be / and the length of the base a, then
the formula is derived as 1/2ah.

T: Analogically.

S1: Iremember! Build up another trapezoid with the same size and area to form a

parallelogram, reduce it by half, then you get the formula for the area of the trapezoid.

Diagram 1 Diagram 2

Now the teacher shows diagram 2, supposing that the upper base is a, the bottom base is b, the

height is A, and then its formula is 1/2(a+b)h.
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2. Abstraction and Generalization

T: The above process of solving the problem is finished because the solution of the problem

Si:

S2:

S3:

S2:

S2:

involves seeking and recognizing the way by which the main body of mathematical
activity shortens and eliminates the disparity and the gap between the known state and
unknown knowledge, so as to recognize the mathematical object and transform the
unknown into the known. The formula for the area of the trapezoid, as we know, is
derived by transforming the unknown into the known and bridging the gap or dispelling
the contradiction; however, a higher level as an ideal method may be reached through
abstraction and generalization. Thus, we can find out their common ground by comparing
and deriving the formula for the area of the trapezoid from the one for the area of the
triangle.

Either the triangle or the trapezoid is transformed into a parallelogram through a build-up
process.

The area formula is developed by reducing the parallelogram by half.

These two characteristics, as a method of solving the problems, are essential. Can you
name the method?

The name is the method of Build-up.

Can you characterize it at a higher level? (All students are silent in the class.)

What's the interrelation between the parallelogram, the triangle, and the trapezoid?

It is the relationship between the whole and the part. The parallelogram is the whole
relative to the triangle and the trapezoid, but the triangle and the trapezoid are parts
compared to the parallelogram. Therefore, the problem of the triangle and trapezoid as
parts, which can't be solved, may be transformed into one with the parallelogram as the
whole. Because the entire problem has been solved, the "part problem" can be solved too.
Can you name the method?

The name is the entire transformative method.
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S3:
S4:

The method of solving problems by change through transformation from part to entirety is
called the transformative method with common significance. Are there any other
analogous mathematical formulas that you can think of?

The formula for the area of a sector.

3. Sense Reversing Thinking

T:

Sl:

S3:

S4:

S5:

The above method is from the part to the whole. Can the area formula for the trapezoid be
derived from the whole to the part.

Transform a trapezoid into two triangles just like diagram 3. After the area of the separate
triangle is evaluated, the sum of the areas of the two triangles is the area of the trapezoid.
Transform a trapezoid into a parallelogram and a triangle, as shown in diagram 4. Their
sum is the area of the trapezoid.

Transform a trapezoid into two triangles and a rectangle, as shown in diagram 5. The sum

of their areas is the area of the trapezoid.

Diagram 3 Diagram 4 Diagram 5

Who can define the part transformative method?

The method of solving a problem by changing from the whole to a part is called the part
transformative method.

Can you draw a chart that shows the procedure for the solution of such a problem?

Yes, as in diagram 6.
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S6:

S6:

S7:

I__whole problem g part problem

Y

solving - solving

Diagram 6

This is a split-plot design by which the whole problem is transformed into a part problem.

Thus, the part transformative method is called the split-plot design. The method of

superposition is used to solve problems from the part to the whole. What is the

relationship between the part and the whole transformative method from the viewpoint of

the direction of thinking?

The direction of thinking is just the opposite.

One is from the part to the whole, the other is from the whole to the part. If the whole

transformative method is seen as thinking in the positive direction, then the part

transformative method is...

Thinking in the negative direction.

Can you give any other examples of thinking in the negative direction?

An example is to operate on the formula (a—b)(a+b) = a2-b2 from left to right, then
(a-b)(a+b) = a2-b2

is the thinking of the positive direction, while going from the right to the left is thinking in

the negative direction.

Thinking in the negative direction is a thinking method by which the problem is handled

coutrary to a common process or from the opposite manner. If the problem is considered

frcm the positive direction to the negative direction, it helps to develop thinking ability,

especially to develop a creative thinking capacity.
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4. Entire Transformative Method
We've already known that the part transformative method includes three deriving methods.
Now we further consider the whole transformative method, which is the build-up method. How
many methods are there besides those above?
S1: Build up a parallelogram, as shown in diagram 7; the area formula for the trapezoid is
derived by way of the difference between the areas of the parallelogram and the triangle.
$2: Build up a triangle as in diagram 8, then the area formula for the trapezoid is developed by
means of the difference between the areas of the bigger triangle and the smaller triangle.
T: Can you derive it in detail?

S2: Supposing the height of AEBC is h, then

IfAAED ~ ABEC, thenh: (hy+h)=a:band (b-a)h; = ah;
then from the above, we have S =1/2(a+b)h.

T: Very good! Here the principle of similar triangles is applied. Are there any other deriving
methods?
$3: Build up a trapezoid into a rectangle, as in diagram 9. The formula for the area of the

trapezoid is derived by way of the difference between the area of the rectangle and two

triangles.

Diagram 7 Diagram 8 Diagram 9
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5. Transformative Method of Equivalent Area

T

S1:

S2:

S3:

S4:

Besides the split-plot design and the build-up method, naturally we can consider the cut
and complement method. How many methods are there regarding the formula for the area
of a trapezoid that are derived by the cut and complement method?

Cut down AGFD to build it up on AGEC, transform the equivalent area of the trapezoid
ABCD into the area of the parallelogram ABEF, as in diagram 10.

Cut down AEBC to build it up on AEFD, transform the equivalent area of the trapezoid
into AABF, as in diagram 11.

Build up AGAE on AGBF and AKDH on AKCJ, transform the equivalent area of the
trapezoid into the rectangle EFJH, as in diagram 12.

Build up the trapezoid EBCF on [JGHDF, transform the equivalent area of the trapezoid
into that of the parallelogram AEGH, as in diagram 13.

Diagram 10 Diagram 11

F .

1

GI
A 2
E

Diagram 12 Diagram 13

T: Are there any changes of the area between the non-transformed and the transformed

figures in diagrams 10-13?
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S1: No.

T: That is to say, it is area-equivalent; then what can you name the cut and complement
method?

S1: The method of equivalent area transformation.

T: Very good! The method of equivalent area transformation is a transformative method by
which the problem is solved. It is further generalized to the method of geometric
transformations and further to the RMI method (Note: see thé appendix).

The above-mentioned method for the area of a trapezoid is also generalized abstractly to the
principle of inter-build-up divergence; that is, a plane figure is moved from there to here without
changing its area. If the figure is cut into several parts, the sum of the areas of the separate parts is
equivalent to the area of the original figure; therefore, there exists simple equal relationships
between the sum and difference of the areas of the figures moved before and after. This is quite an
important principle in problem solution in figures in ancient China, and it is included in the book
Nine Chapters in Mathematics. This indicates that ancient people already had a higher capacity to
abstractly generalize the principle appiied to solve a practical problem, by which the figures are
transformed to each other, so as to reach the goal of transforming the unknown into the known.

6. Specialization

T What method may be generalized from the deriving method for the formula for the area of
the trapezoid, including the build-up, the split-plot design, and the cut and complement
method?

S1: Transformation.

T: Very good! Can the lower level be compared with the transformation? (All fall silent in
class.)

T: Think it over; what figures is the unknown trapezoid transformed into?

S: Triangle, parallelogram and rectangle.

T: What's the relationship between these figures and the trapezoid?




$3: A trapezoid may be changed into a parallelogram, and a rectangle when its two sections
are in a special place; thus, they are the general and the special relationships.

T: Can a trapezoid be transformed into a triangle?

S§2: Yes, when the short base of the trapezoid is 0.

T: That is to say, a triangle can be seen as a trapezoid in which the short base is 0, as a
special case of the trapezoid. Thereafter, the general trapezoid may be transformed into
special unknown figures, such as a triangle, a parallelogram and a rectangle. Then what is
the method by which the formula for the area of the unknown trapezoid is derived?

$3: Specialization.

T: Right. The special method is an ideal guiding method, considering that a general object
set is the union of small sets. What problems can be solved with the special method?
This is your homework for after class.

7. Dynamic Thinking

T: Let's investigate what is common among diagrams 2,3,4,7,8,10,and 11.

S1: Their common ability is that an auxiliary line is drawn that intersects the line of the known
trapezoid or its extended line, so as to reach the goal of developing the area formula for the
trapezoid.

T: Very good! Can the auxiliary line in diagram 3 be changed into the auxiliary line in
diagram 47

S2: Yes, only rotate an angle of the auxiliary line in diagram 3.

T: Can it be transformed into the position on the auxiliary line of other figures?

S:  Yes, the auxiliary lines in diagrams 2,4,7,8,10,and 11 may be drawn after the auxiliary
line on diagram 3 is rotated and translated.

T. A straight line can be moved to any position in a plane by using a rotation and a
translation. When this line is at a particular place, the auxiliary line is such as the ones in

diagrams 2,3,4,7,8,10,11. If this auxiliary line is not in a particular place, but in the
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others, for instance, one shown in diagram 4, can the formula for the area of the trapezoid

be derived?

S4: Supposing BC=a, AD=b, the height of the trapezoid is /, the height of the corresponding
side BC on AFEB is h;, BE=a, DG=b,, and the height corresponding side DG on
AHDG is h, then the area of trapezoid is:

Sance = Sares— SaHDG * SAFAG
=1/2(a+ay(btho}-112a h ~1/2b hyt 1 2(b=b,)h=hy)

=1/2(ah+ah2+a1h+alh2—alhl—blhz-{—b}z—blh»—bh1+b1h1)
Since AEBF ~ AGAF and ADHG ~ ACHE, we have

ay(h~h)) = (b=b))h,

b(h+hy) = (a+a))h,

Then, S = 1/2(a+b)h

Diagram 14

T: How many methods are there by which the area formula for the trapezoid is derived, if
classified according to the different positions of the auxiliary lines?
S5: There are countless methods.
8. Generalization
T: Can the auxiliary line in diagram 9 be put in a general place to derive the area formula for

the trapezoid?
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S1: Asshown in diagram 15.
Draw AENDF , the extension line of BC line intersects points £ and F. point G on line CD,
then:
S=SpaBr+S ThEFD ~ SacDF
=1/2(a+CE)h+bh-1/12(b+CE)h
=1/2(a+b)h

e e F

Diagram 15

Especially when the parallel lines AE and DF are perpendicular to the line AD. the auxiliary line

can be drawn as shown in diagram 9.

§3 CONCLUSION
The mathematical approaches, such as abstraction, analytic, synthesis, classification,

transformation, specialization, generalization and thinking in the negative and dynamic directions,
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that are used widely in the course of deriving the area formula for the trapezoid, are abundant and
also possess significant common guiding features. It is practically proved that the effects on
teaching mathematics are ideal in choosing such a typical example of the guiding explorative
method The class was quite active, and this helps to train the wide-range, profound, nimble and

critical thinking ablities of the students and to increase the students' mathematical concepts.
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§4 APPENDIX

Approach of Inversion of Relation Mapping
The approach of an inverse relation mapping is quite a popular method of thinking. Its nature
is the contradictory transformative approach by which a more difficult problem can be transformed

into a problem that is handled more easily. Let's analyze two examples to generalize this method.

Method of Analysis
Descartes transformed a geometric problem into an algebraic problem by way of building up
the coordinate system, and then he drew the geometric conclusion by means of an algebraic
conclusion. From this, he raised a general model--a Universal Method to deal with the problem:
i Transform any problem into a mathematical problem
ii Transform any mathematical problem into an algebraic problem
iii Transform any algebraic problem into a solution of an algebraic equation
Because the problem of solving an equation may be regarded as solvable, various kinds of
problems can be solved by the use of Descartes' Universal Method. Obviously, Descartes'
conclusion is not totaily correct because any method can be applied in only a certain scope, and not
absolutely. The reduction idea raised here by Descartes is a heuristic. A problem that can't be
solved or can't be easily solved may be reduced to a new problem that can be solved or can easily
be solved. Analytic geometry, that was originated by Descartes, is a concrete application of the
reduction principle. If the process of Descartes’ solution of analytic geometry is expressed in
frames, as shown in the diagram, it is easier for us to understand.
Tt is the method of analytic geometry that is applied to effectively study the conic section and

the quadratic conicoid, so, the new discipline of analytic geometry has quickly been established.
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analytic expression

trl bl el algebraic probl
geome $C prooem build-up of coordinate system &€ rilc prooem
geometric conclusion | -&— algebraic conclusion
Diagram 1

Method of Logarithmic Computation
Similar to the method of analysis, the method of logarithmic computation is also a concrete
application of the reduction principle. For instance, in order to compute y = V0.6842 by way of
logarithmic computation, the process is composed of three steps as follows:

Step 1 Compute logarithmically
lg y =lg™N0.6842 = 1/5 1g 0.6842

Step 2 Compute by use of a table of values

Uit 30 B S

lg y=1/5 (0.8352-1) = 0.9670-1;
Step 3 Compute the antilogarithm
y = 0.9268

The above computation process is expressed below in frames, as shown in diagram 2:

®
y = N0.6842 » | 1gy=1/51g0.6842
logarithm
compute by | table (look up)
(p—l
y = 0.9268 - 0.9670 — 1
Diagram 2
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Rough Generalization

The common point of the above two examples is to establish the corresponding relationship
between two objects. In analytic geometry, a correspondence is established between plane-space,
point-set and binary-ternary ordered sets of real numbers by means of the coordinate system, while
plane point-set is a geometric structure. Therefore, this can reduce a geometric problem to an
algebraic problem. In logarithmic computation, a correspondence is established betwee.. the set of
positive real numbers and real numbers through symmetric functions, which realizes the reduction
from a more complex operation (multiply, divide, involution, evolution) to a more simple operation
(addition, subtraction, multiply, divide).

The set of mathematical objects that have a certain mathematical relation with each other, is
usually called the relationship structures, so the transformation from complex to simple or hard to
easy has a definite procedure, which is called a mapping relation. Since the corresponding
relationship overall is applied twice in an opposite direction, if the correspondence from the
original problem to a new problem is called a mapping, the correspondence of the solution of

original problem is called an inverse mapping, expressed in diagram 3:

@
original problem : new problem
mapping
¢!
solution -€ - solution
inversion
Diagram 3

To sum up, we may generalize the commonly significant inversion method of relation
mapping, abbreviated as the RMI method. It means that " an original problem” after being

transformed by a mapping ¢ into "new problem" that has been solved by inversion, can be solved.
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In order to strictly express this method, some basic concepts must first be defined.

Some Basic Concepts

Mathematical Object. This refers to the mathematical concept involved in concrete
mathematical theory; e.g., number, magnitude, variable, function, equation, point, line, surface,
geometric figure, space set, computation are all mathematical objects. There are three features:
determinacy, logic rationality and existence of a subjective background under a special condition.
Therefore, fabricated concepts can't be regarded as mathematical objects.

Relationship structure. This refers to some mathematical relationship among the elements of
set organizaiion by some mathematical objects. Relationship structure refers to thr relationship
which may be exactly defined among the mathematical objects; e.g., algebraic relation, function
relation, correspondent relation, consistent relation, non-consistent relation, and so on. Generally
speaking, the structure of a mathematical relation should possess thr. - prerequisites: one is that the
object is only a mathematical object in the structural system; the second is that a connection among
the objects should be a mathematical relation; and the third is that the structural system has logic
rationality and Jogic deductivity to some significant extent.

Mapping. A correspondent relation that is established between two kinds of mathematical
objects or elements of two mathematical sets is defined as a mathematical mapping. Particularly, if
it is a one-to-one correspondence, it is called an invertible mapping.

Mathematical Formality. The variety of deductive reasoning, methods of proof and
computational methods used in mathematics, is called mathematical formality, which consists of
procedures completed through a finite number of steps.

Supposing ¢ is a mapping, it maps an element of the set A={a} into another set A*={a*}, in
which a* represents a mapping of a which is called an inversion image, so

GA----—-A* d(a)=a*

If there exists an inversion mapping ¢-1, then ¢(a*)=a. Supposing P={6} is a group of
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relations or computations which can be defined among the entire or part sets of A, thereafter

S={A,P} organizes a relation structure. Supposing that § contains an unknown object X which is

called an inversion image of the object under the action of ¢, then X*= ¢(x) is called an object

mapping.

Under the action of ¢, A is mapped to A*, the relation on A is mapped to P* ={6*}, S is
mapped to S*=(A*,P*). S* is called a relation structure of mapping, containing object mapping
X*=¢(x). Supposing x represents unknown object inverse image, then x*=¢(x) represents a
correspondingly an unknown object mapping.

Definable Mapping. If an unknown object x is mapped and is determined to be x* from the
structural system of mapping relations through the deterministic procedures, the mapping ¢ that

transforms s to s* can be called definable mapping.

Definition and Application of RMI
Now we can strictly describe the method of RMI:
Provided with the system of a relation structure S=(4,P.X), inciuding unknown object

inverse image x, if both inverse and definable mapping ¢ to be likely found maps § to

S*=(A* P* X*), unknown object mapping X*=0(x) is determined through the inverse mapping
&1, the process is shown in diagram 4, and also may be simply expressed as

(S X)--0--(5% X4)--0-- x5 0L
Therefore, the entire process of the RMI solution method is:
Relation--Mapping--Definable Mapping--Inverse Mapping---Solution '
The method of RMI is applied widely in mathematics, such as in trigonometric substitution,
variable substitutios:, geometric transformations, coordinate transformations, methods of complex

numbers, vector methods, linear transformations, and logarithmic transformations. These are all

special methods of RML
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The key tosolv  nroblems by applying the RMI method lies in selecting a reasonable and
effective mapping method. What is an effective mapping? It satisfies the following two
conditions: one is that the mapping is not only invertible, but also definable; the other is that it

plays the role in transforming relation of the inverse image into a mapping relation from complex to

simple, hard to easy.

@
S, X | S* X*
? ¢
-1
y Y
- X*
Diagram 4
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MATHEMATICAL PROBLEM SOLVING

Yoshihiko Hashimoto

Yokohama National University

1. Analyzing Problem Situations in Problem Solving

Much research on mathematical problem solving has been done in the last decade. Problem
solving in Japanese elementary schools is introduced as one of the results of the U.S.-Japz.,
Seminar on Mathematical Problem Solving (Hashimoto, 1989).

The following two aspects are pointed out there:

a. Recognizing and evaluating children's various ideas.
b. Discussions between the teacher and a chiid, and between the children.

The protocol in the classroom can be seen in the Nagasaki and Becker article in the NCTM
Yearbook (1993). I think these two things should be emphasized even in secondary school
mathematics. But there seems to be less emphasis the higher the grade level.

I will show an example of how to analyze a problem situation in problem solving:

How many parts can the plane be divided into by three lines?

The answers are 4, 6, and 7. If only 7 is required as the answer, add the term "maximum” to
the original problem. The important thing is to analyze the problem situation. Generalization is
carried out in the following process:

a. To change from a constant to a variable.
b. To delete a part of the conditions.
Regarding the original problem, there are three problems as follows:
Problem A: How many parts can the plane be divided into by three lines at the maximnm?

Problem B: How many parts can the plane be divided into by » lines at the maximum?




Problem C: How many parts can the plane be divided into by » lines? (What is the number
of regions formed by an arbitrary arrangement of » lines in the plane?) (Wetzel,
1978)
Problem B is a generalization of Problem A, and Problem C is a generalization of Problem B. The
important thing in secondary school mathematics is to think generally about the problem after
solving the problem.
2. From Open-ended Problems to the Developmental Treatment of Mathematics

Problems

The following is a concrete example which was tried out with eighth grade students (13-14

years old).
A H D

Take a point £ on the diagonal AC in

parallelogram ABCD. Draw a parallel

AN/
line EG to AD and HF to AB like Figure 1. / /\/
B E C

Fig. 1

Problem A: Find as many relations as possible among the segments, angles, triangles, etc. in
Figure 1. There are many relations (answers). For example.
a. lengthof asegment: AE=HP=DG
ratio of a segment: AE:EB = DG:GC, PH:PF = PE:PG
b. size of an angle: 4DAC = £BCA, LEHF = LGFH
c. area: area of parallelogram EBFP = area of

parallelogram HPGD;
area of quadrilateral EFGH = 1/2 x (area of

parallelogram ABCD)
d. congruence: AAEP = APHA, AABC = ACDA
e. similarity: AAEP ~ ACGP ~ AABC
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There are many correct answers in this problem. We call this an open-ended problem. An
open-ended problem is one that allows several different solutions according to how students view
the problem situation. (Shimada, 1977)
Let's pick up the following problem from among the answers given above:
Take a point P on the diagonal AC in parallelogram ABCD. Draw a parallel line £G to
AD and HF to AB as in figure 1.
Prove that PH:PF = PE:PG

Problem B: Make up a new problem by changing parts of the problem. The analysis of

problems was made by students (Hashimoto and Sawada, 1984).

/&p / p
f*\i q
N el

Fig. Fig. 2 Fig. 3
"
e N

/A v ;
/ [l

— N /
~ e E
Fig. 7 c Fig. ‘4 Fig. 5

2
=

Figures 2-7 are variations of Figure 1. The problems corresponding to these figures were
made by changing parts of the problem or by using the converse of the given problem. The

explanation of the problems is as follows:
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Figure 2:
Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 7:

Draw perpendicular lines by changing the part of parallel lines.

Draw arbitrary lines by changing the part of parallel lines. (Even in this case, the
conclusion that PH:PF = PE:PG is satisfied. Then one of the generalizations is
satisfied, and students can learn the property between paralle! lines and
proportion.)

Changing how to take a point. For example, take a point on the extension of the
diagonal.

Changing how to take a point. For example, take a point inside the parallelogram.
(The conclusion is not satisfied in this case. Students can easily find a counter-
example.)

Change a shape. (As the conclusion is not satisfied in this case, one of the
generalizations is not satisfied.)

Consider the converse of the given problem. (The conclusion is not satisfied in
this case because we can find a counterexample. In reality, students could not find

it.)

This illustrates the developmental treatment of mathematics problems. Concrete examples of

such problems can be seen in Japanese elementary and junior high school (7th, 8th, and 9th

grades) mathematics textbooks.

In teaching the developmental treatment of mathematics problems, the teacher organizes the

lesson according to the following scheme:

a. To solve a given problem,

b. To discuss the methods of and the solution to the problem,

¢. To formulate new problems by changing parts of the given problem,

d. To propose new problems to the whole class (whole-class teaching is typical in Japan at

all levels),

e. To discuss some of the new problems and classify them,
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f. To solve common problers selected by the teacher or students,

g. To solve students’ own problems.

3. Teacher's Attitude Toward Mathematics

I think it is very important for classroom teachers at all levels to carry out a lesson by using an
open-ended problem or by the developmental treatment of a mathematics problem. This depends
on the teacher's attitude towards mathematics.

The Japanese school mathematics curricuium is now changing; that is, at the elementary
school level (1-6) since 1992, at the junior high school level (7-9) since 1993, and at the senior
high school level (10-12) since 1994. These two kinds of mathematical problem solving should be
encouraged by classroom teachers. I would like to point out that classroom teachers should have a
chance to carry them out at least once or twice in each term (3-6 times a year). Judging from my

experience over twenty years, this seems possible.
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ON THE PROBLEM SOLVING TEACHING PATTERN OF CHINA

Xiaoming Yuan

Shanghai Normai University

China is a country with rather fixed traditions in its educational culture. Influenced by
traditions and economic developments, Chinese education has been following its own rules from
the beginning to the end. Both educational content and methods are standardized. This kind of
education of "Unity" not only effectively guarantees the handing down of Chinese national culture
and national spirit from generation to generation, but also means that foreign culture 1s fiitered by
our traditions to fit our national situation, before it is spread out.

For the teaching of mathematics in China, The "Problem Solving Pattern" is exotic. Although
it is a modern, advanced and effective teaching pattern, being exotic, it has to be transformed so as
to become a kind of "Chinese Problem Solving Teaching," which can fit the basic situation of
Chinese mathematics teaching. What is the basic situation of Chinese mathematics teaching? First

we should look back on history.

I. History in Retrospect

China is a country which is good at mathematics as well as education. Before Western
mathematics was introduced into China, matheiuatics in the Chinese people's mind was a kind of
arithmetic---that is, calculating skills. In detail, it was the art of equation establishing and the art of
computing in solving mathematical problems, where "art" means "method.” The reason for this
method, that is, the explanation for doing it this way, was called "reasoning” in ancient China.
"Problem + calculating methods + reasoning" was the basic structure of traditional Chinese
mathematics. Studying "calculating skills" meant studying "the methods and the reasons."
Comparatively , the methods were more important. Since Chinese arithmetic focused on
calculating methods, mathematics teaching in ancient China aimed at teaching and learning the
methods. Problem solving was out of the question. Problems were just the support for exercises,
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not the objects to be solved.

From the 17th to the 19th century, the development of practical mathematics reached its high
tide in China. Although it seemed that many problems needed to be solved in mathematics, the
basic patterns of tl.e problems were alike and were also very simple. So, you could deal with any
mathematics problem as long as you grasped the calculating methods of the basic patterns.

Because the content to study was not rich and not difficult, the basic content of mathematics
teaching at that time focused on the teaching of calculating skills. The teaching method was a
“Teach-You-to-Learn Pattern” which involved integrated teaching and practicing, just the way a
master worker trained an apprentice.

After the 19th century, a great deal of Western mathematics was introduced into China, among
which were algebra (which involved higher-level thinking), analytic geometry and infinitesimal
calculus. At the same time, Western school education was also introduced. This was a
revolutionary change for mathematics teaching, but the popular teaching method in school was the
traditional "Teach-You-to-Learn Pattern.” So, instead of being shattered and completely covered
by modern education, the mathematics teaching pattern, that had a history of more than 2,000 years
and that experienced the pounding of the reformation of ages, had both adaptability and vitality. It

becarne one of the basic characteristics of modern mathematics teaching in China.

II. Present Situation

The basic situation of mathematics teaching in China possesses many characteristics, among
which "Unity" is the most intrinsic one. The so-called "Unity" means teaching according to the
same syllabi and the same teaching materials. In recent years we have changed the situation for
“millions of students studying the same textbook," and different regions can now choose and
compile their own teaching materials. But so far as one region is concerned, once the teaching
material is decided on, teachers must then, based on the chosen material, adhere to the same
teaching objectives, teaching requirements, rate of teaching and the examination paper. In this
way, both the content and the form are standardized, so that the mathematics teaching in this region
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goes on regularly with a certain rhythm. But what we should notice is that although we strongly
advocate the freedom of running schools and doing the teaching, the teaching objectives and
requirements in the syllabus are becoming more and more detailed. The teaching objectives
involve not only teaching students knowledge, but also cultivating their abilities and educating
them in ideology. The teaching content and requirements are standardized in the ten stages of the
three fields of cognition, feeling and practice. (The field of cognition contains four stages--
knowledge, understanding, mastering and applying; in terms of feeling, we refer to motive,
attitude, habits and emotion; as for the field of practice, it is divided into initial grasping and

grasping.) Thus, restrictions are placed only to hinder teachers' initiative.

III. The Characteristics of Problem Solving in China

History and reality make Chinese teachers show their own characteristics in accepting and
applying the Problem Solving Teaching Pattern. The main characteristics are:

1. They focus their attention on textbooks while choosing and designing problems.

Although in applying the "Problem Solving Teaching Pattern," the selected problems
are not necessarily required to closely follow the teaching material, they generally fit in with
the content of the material in order to improve the effect of teaching. The introduction of
the concept "minus"” is a good example. Because they accept the concept "positive"
through the prescription of the quantity of concrete things, students hope, more often than
not, to learn "minus" in the same way. That is very hard to do. So, it is a good method to
create a problem situation and to help them know and accept a new concept through solving
problems.

We can create a problem situation like this: On the blackboard hangs a model
thermometer, in the middle of which the movable red paperboard stripe indicates the
“mercury.” Inteaching, the teecher moves the "mercury" indicator to show the
temperatures G°C, 11.3°C and 3.4°C below zero, respectively. Then the teacher says, "In
February, the average temperature in Guangzhou is 11.3°C. But in Beijing it is 3.4°C
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below zero. The question now is, how much higher is the average temperature in
Guangzhou than in Beijing?" The students know that it is a problem of subtraction. But
what would be the expression? 11.3 —3.4? No. Then, 11.3 above zero ~ 3.4 below
zero? That seems correct, but how do you calculate it? As a result, the idea of "minus”
comes into being through the solving of the problem above. Simple as the problem may
look, it possesses the following characteristics:
(1) It offers the necessary elements and forms to stimulate studying by the students:
(2) It provides the necessary elements and forms to induce the mathematical thinking and
creative consciousness of the students;
(3) It provokes the students' desire to solve the problem;
(4) It helps to reach the teaching goal.
2. They do not seek novelty blindly.

Rather, they vary their teaching approaches, within the limits of the teaching
requirements, to broaden the educational value of the problems. For example, "find the
length of the diagonal of a rectangular parallelogram” is a conventional mathematical

problem. According to the "Teach-You-to-Learn Pattern", the teaching of this problem

k

E

3

3 generally follows five steps:
1) Introduce the concept of rectangular parallelogram through a concrete example;
2) State the definition of a diagonal;

3) Present the diagonal calculating fcrmula--the theorem for the diagonal of a rectangular
parallelogram;
4) Prove the theorem;
5) Apply the theorem to other examples.
In doing so, teachers are the operators while students receive knowledge passively, which has
almost nothing in cornmon with the "Problem Solving Teaching Pattern.” But the difference is

produced by the teaching method, not the problem itself. Actually, if the teacher could pose the
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problem in another way, accompanied by corresponding teaching methods, the problem would
become an identical “problem solving" one, which is based on the teaching material.

Once, based on the teaching strategy of G. Polya, I used the problem solving pattern to give a
Jecture on "How to find the diagonal of a rectangular parallelogram" to the students of Class 3.
Junior Three of the Middle School Attached to Shanghai Teachers' University. It had a good
effect. Here I will briefly describe my teaching experience.

Problem Introduction

(Problem 1)

Teacher: Once I was attracted accidentally by a cuboid paper-pressing stone while I was reading at
my desk. I thought that its volume could be obtained easily in mathematics by
measuring its length, width and height and then multiplying them. But it was difficult to
obtain its diagonal. Now I present the problem so that you can find the solution.

Teacher: Who can express the problem clearly? (That means to restate the problem in some form.)

Student: "If the length, width and height of a rectangular parallelogram are known, what is the
length of its diagonal?"

(Problem 2)

Since they had learned the Pythagerean Theorem before, I had expected that their way of
thinking for solving this problem would be: find the diagonal — give it a definition — look for a
certain right triangle in which it lies — use the Pythagorean Theorem twice to obtain the formula.
To my surprise, the students obtained the formula directly through analogy. (This is the out-of-
control state of teaching which can be caused by the "Problem Solving Teaching Pattern.”)

This, however, was just a phenomenon. Students might have used different analogical
methods. They might have deduced NaZ+b2+c2 from Ya2+b2 through figures
by the analogy between a rectangular parallelogram and a rectangle, or deduced Na2+b2+c2? directly

from Va2+b? without referring to figures. Actually, when I drew a rectangular parallelogram on

the blackboard and asked the students to point out its diagonal, the student who had obtained the
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diagonal formula unexpectedly said that the segment DC was the diagonal.

This shows that although the student had transplanted some knowledge, the cognition
structure produced by the transplantation had some drawbacks. On the other hand, it presents, in
one respect, that the "Problem Solving Teaching Pattern” is effective in exposing the students'
thoughts. It is the exposure of their thoughts that makes the class atmosphere lively.

From producing the concept defining the diagonal of a rectangular parallelogram, and
obtaining the calculating formula, other problems are derived. The derivation from the application
of the theorem is called "nodal derivation." For example:

Problem 3: "Given the height of a cube, find the diameter of its circumscribed sphere."
Problem 4: "Given the heigh: of a regular quadrangular pyramid and the sides of its lower base,
find the lateral edges."

Although Problems 3 and 4 are general ones, they can be solved through the "Problem
Solving Teaching Pattern" because the same problem can become more interesting after being
reformulated and also can become very standard through the teaching method design. For
example, as designed by Polya, Problem 3 can be reformulated into Problem 3'.

Problem 3": Suppose that a small ball is hung in a cube. The ball and the cube share the same
center. Inflate the ball to make it expand. At a certain moment, the surface of the ball touches the
faces of the cube; a little later, it touches the vertices. Which values does the radius of the ball
assume at these three critical moments? Problem 4 can also be reformulated in the same way. The
reformulation of the problems is advantageous to the application of the "Problem Solving Teaching
Pattern,” but it is not essential. The "Problem Solving Teaching Pattern" in China is realized
mainly through the teaching ideology and the . riation of teaching methods and approaches, in
which teachers play a very important role because in teaching, mathematical problems have no
specific characteristics and can be used in the "Problem Solving Teaching Pattern" as well as other
teaching patterns. In other words, whether a problem is used in the "Problem Soiving Teaching

Pattern™ or not depends on the teachers' intentions and design. Only when a problem is used in the

220 £

N
e




“Problem Solving Teaching Pattern" by teachers, who design their teaching methods elaborately,
can the teaching value be brought into full play.

The homologue of "nodal problem derivation" is "radiative problem derivation” - this means
starting again from the original problem to derive a series of problems. For example, starting from
the diagonal AC of the rectangular parallelogram, we think about the following problem.

Problem 5: In rectangular parallelogram ABCD-A'B' C' D', B'C'=2a, B’B=a, if the section with
AC in it intersects with lateral edges forever, when is the perimeter of the section the shortest?
Find the shortest perimeter.

This problem can also be reformulated into a more interesting one as:

Problem 5" If an insect starts from the vertex A of rectangular parallelogram ABCD -A’B°C’D’
and crawls on its surface to C along a straight line, how can it take the shortest distance?

This problem is related to the shape of the rectangular parallelogram and is open to
a certain degree. It is a good example for problem solving teaching.

3. They pay attention to the summing up of the ways of solving problems. And they put the
stress on the training of the logical thinking of the students.

China can be called a kingdom of problem solving. The reason for so much attention to
problem solving in mathematics teaching is that solving problems not only can be used to examine
students for their grasp of the mathematical concepts, but it can also help to develop their logical
thinking and cultivate their thinking abilities. Mathematics is not equivalent to solving problems,
but it cannot exist without problem solving. As a kind of problem solving pattern, solving
problems shares the same significance and effect with general problem solving. But its effect can
only be brought into full play through quantity accumulation and necessary summing up. That also
suits the "Problem Solving Teaching Pattern." If a teacher trains students in solving problems
without paying attention to the summing up of the methods, the result will be that the intelligence
of the students cannot be brought into play, although they may have solved many problems.

"Come up with a good idea," is what Polya says. But a good idea, as Polya said, cannot be gotten
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easily. In this regard, there is much in the Chinese training methods that can be used for reference,
one of which is paying attention to the summing up of the methods and the development of logical
thinking of the students. In practice, two points are worth mentioning: first, do not avoid the
suitable repetition of problems of the same type; second, find laws in repetition. In recent years,
some of the theorists in mathematical education and experienced primary and middle school
teachers in China have made a summary of the ways of mathematical thinking most in use and tf -

"strategic ideology tactics for probler solving," both of which are practically significant.
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"HIGH ACHIEVEMENT" VERSUS RIGIDITY: JAPANESE STUDENTS'
THINKING ON DIVISION OF FRACTIONS!

Yoshinori Shimizu

Tokyo Gakugei University

1. Intreduction

Japanese students have presented relatively high scores on various tests of mathematics
achievement (e.g., NIER, 1981; Sawada, 1987). This is particularly true when the test items
involve computation with numbers. For example, division of fractions is a topic in which most
students have demonstrated mastery of the algorithm. A comprehensive nationwide survey of
Japanese students' mathematical performance which was conducted by the Ministry of Education
in 1984 showed that 93.2% of the 6th graders (N = 16,000) correctly answered the item
"7 + 3/4" 2.

Although it is important for students to know how to execute the “invert-and-multiply"
algorithm for division by a fraction efficiently, they must also know why it works and how to
verify that their answers are correct. Division by a fraction is, however, a typical topic in school
mathematics as a "rule without reasons" (Skemp, 1976). For many students, computation with
fractions may seem to involve a series of nonverifiable rules. Do Japanese students who have
presented "high achievement" merely apply memorized rules? What are their responses if we ask
them to explain their procedures?

The aim of this paper is to explore the aspects of students’ thinking on division of fractions.
This topic, though it might be hackneyed like "a negative times a negative is a positive," is
interesting and allows us to examine the relationship between "conceptual knowledge" and
“procedural knowledge" (Hiebert & Lefevre, 1986). As commonly used, conceptual knowledge
refers to knowledge of the relationships and the interconnections of ideas that explain and give
meaning to mathematical procedures. Procedural knowledge refers to mastery of computational

skills and knowledge of procedures for identifying mathematical components, algorithms, and
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definitions. More specifically, procedural knowledge of mathematics has two parts: (a)
knowledge of the format and syntax of a symbol representation system and (b) knowledge of the
rules and algorithms that can be used to complete mathematical tasks. In the case of division of
fractions, althoug : both procedural and conceptual knowledge are considered necessary aspects of
understanding, one of them may be dominant in some situations.

In this study, I sought to use the conceptual/procedural distinction to exarmine the students’
beliefs about mathematics and about mathematics learning. To do this, a non-standard but correct
method of doing division was systematically introduced to the students to create a perturbation in
their procedural knowledge and to examine its impact on their conceptual knowledge. By doing

so, one can gain a window through which to see some of the "hidden" dimensions of teaching

and learning mathematics; in particular, the students’ beliefs and the "hidden" curriculums3.

2. Method

In this study, two methods were used to explore the aspects of students' thinking on division
of fractions: written tests (study 1) and semi-structured clinical interviews (study 2). These
methods will be described briefly.

Study |: In study 1, grades 6 (elementary school) and 7 (junior high school) students (N =
590) were asked to solve a problem which included a correct but unfamiliar procedure - the

numerators and denominators are divided, respectively (e.g., 8/15 + 2/5=(8 + 2)/(15 + 5) =

4/3). This procedure is called "Yoshiko's method" on the test sheet given to the students4.
This written test was also administered to grades 10 and 11 (senior high school) students (N =
:26) in order to compare their performance with the sixth and seventh graders. Students'

responses were classified by the "reasons" for their choices.

1. Find the answer to the following division of common fractions:

8/15 +4/5 (page 1)
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2. To explain her method of computation, Yoshiko said,"When I learned the multiplication of
common fractions, I multiplied the numerators and the denomir.ators respectively. So, in a similar
way, I will try to divide the numerators and the denominators respectively.”
8/15+4/5=(8+4)/(15+5)=2/3
However, Yoshiko was perplexed when she faced the next computation:
2/5 +3/4
What do you think about Yoshiko's method of division by fractions? Please circle one of the
following items.
{1) Yoshiko's idea is correct.
(2) Yoshiko's idea is not correct.
(3) Although Yoshiko's idea is different from mine, her idea is correct.
(4) Other

Please write the reason why you chose the above item.

(page 2)

Study 2: After study 1 was conducted, a second study was needed to obtain a deeper
understanding of the students' knowledge than could be gotten from analyzing the responses to
written tests itemns. In study 2, about six months after the study 1, clinical interviews and
instructional intervention were conducted with 16 selected students (7th grade) who had
participated in study 1, to probe their understanding of division by a fraction.

Study 2 used two-person problem solving followed by interviews with the student pairs. The
16 students were paired according to their responses to the written test in study 1 as follows: Eight
students who responded "Yoshiko's method is not correct” were interviewed in four pairs; four

other pairs consisted of one student who answered "“not correct” and one who answered “correct.”
These eight pairs were asked to solve a problem> similar to the problem on the written test in study
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I and were videotaped when they were working on the problem. The records were transcribed as
verbal protocols and analyzed.

The interviews and instructional intervention in study 2 were based on the results of study 1.
The interview questions were prepared by the author, taking the students' reactions to the written

test into consideration. They included the following examples:

Student. "Yoshiko's method cannot always be applied."

Interviewer: "In the case of 2/5 + 3/4, we can multiply both the numerator and the denominator
of 2/5 to get 24/60. Then we can apply Yoshiko's method. What do you think of
this?"

Student: "Yoshiko is not correct because '8/15 + 4/5' means how many 4/5s are in 8/15."

Interviewer: "Don't you multiply the numerators and the denominators respectively, when you
calculate multiplication of common fractions?"

Student: "Division by a fractiun should be multiplication of the reciprocal."

Interviewer: "Can you explain the reason why you can get correct answers by doing so?"

In some cases, mostly in the first half of each interview session, these questions were
intended for use in probing students' thinking. For example, when students said “Yoshiko had to
turn upside down the numerator and the denominator, because division by a fraction should be
multiplication by the reciprocal," the interviewer asked them "Can you explain the reason why you
can get correct answers by doing so?"

In other cases, mostly at the end of the interview sessions, these questions were intended for
use as instructional interventions. For example, when students said "Yoshiko's method cannot
always be applied," the interviewer asked them "In the case of 2/5 + 3/4, we can multiply both the
numerator and the denominator of 2/5 to get 24/60. Then we can apply Yoshiko's method. We
can apply her method to all fractions. Don't you think so?" Thus, follow-up interviews had the

characteristics of both probing and instructional interventions.
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At the end of interview sessions with each pair, students were asked to judge the
"(in)correctness” of Yoshiko's method. These reactions were compared to those on the written

test.

3. Results
(1) Results of Study 1

On the first part of the written test, most students got the correct answer (97% for 6th, 96.6%
for 7th and 99.2% for 10th and 11th graders).

Table 1 shows the students' responses to Yoshiko's method at each grade level. As Table 1
shows, more than 71% of the 6th graders and more than 62% of the 7th graders judged the correct
but unfamiliar procedure as a "wrong" procedure. By grade 11, these percentages drop to 35.8%;

however, this still represents a significant proportion of the total group.

Table 1

Grades 6th 7th 10th 11th Total
Correct 13 (4.3) 28 (9.7 9 (15.3) 17 (25.4) 67 (9.4)
Not correct 215 (71.7) 181 (62.4) 29 (49.2) 24 (35.8) 449 (62.7)
Different but )

correct 60 (20.0) 56 (19.3) 14 (23.7) 15 (22.4) 145 (20.3)
Other 11 (3.7) 22 (7.6) 6 (10.2) 8 (11.9) 47 (6.6)
N.A. 1 (0.3) 3 (1.0 1 (1.7) 3 4.5 8 (1.1)
Total 300 (100) 290 (100) 59 (100) 67 (100) 716 (100)

( ) indicates the percentage

The students who chose the response "other” could often reclassify their response into
"correct" or "not correct" according to their comments on "Yoshiko's method." For example, one

6th grader commented that "Although Yoshiko's method is correct, it will be complicated and be in
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trouble with the second question. I prefer turning it upside down to Yoshiko's method." Another
student said that "We cannot always apply Yoshiko's method to problems of divisicn by a fraction.
I think she has to invert and to multiply.” These "other” students who mentioned the
"(in)correctness” of Yoshiko's method were classified again as either "correct” or "not correct."

Table 2 shows the results of this revision of Table 1.

Table 2
Grades 6th 7th 10th 11th Total
Correct 76 (25.3) 95 (32.8) 24 (40.7) 34 (50.7) 229 (32.0)
Not correct 218 (72.7) 188 (64.8) 31 (52.5) 28 (41.8) 465 (64.9)
N.A. etc. 6 (2.0 7 (2.4) 4 (6.8) 5 (7.5 22 (3.1)
Total 300 (100) 29G (100) 59 (100) €67 (10Q0) 716 (100)

( ) indicates the percentage

As Table 2 shows, about 73% of the 6th graders and about 65% of the 7th graders judged
Yoshiko's method as "not correct.” The reasons for their responses to "Yoshiko's method" were
analyzed and classified by three persons. Once the categories were established, intercoder
agreement was calculated to be more than 87%.

The categories of reasons given by the students who answered "not correct” are [isted in the

Table 3.
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Table 3

A. Division by a fraction should be multiplication by the reciprocal
B. Yoshiko's method cannot always be applied

C. Yoshiko's method is contrary to the meaning of a division*

D. Divisions differ from multiplications

E. Yoshiko's method produces curious numbers**

F. Others

G. No Answer

* An example of "The meaning of a division" for the students was "8/15 + 4/5 means how many
4/5s are in 8/15," which was derived from division of whole numbers.
*%* “Curious numbers" for these students were numbers like (2/5)/(3/4), because it was the first
time they encountered to such numbers in this form.

Table 4
Grades 6th 7th Total
A 161 (61.2) 108 (52.9) 269 (57.6)
B 66 (25.1) 36 (17.6) 102 (21.8)
C 6 (2.3) 16 (7.8) 22 4.
Categories D 7 @27 10 4.9) 17 (3.6)
E 2 (0.8) 3 (1.5 5 (L.1)
F 12 (4.6) 14 (6.9) 26 (5.6)
G 9 (3.4) 17 (8.3) 26 (5.6)
Total 263 (100) 204 (100) 467 (100)

( ) indicates the percentage

Table 4 shows the frequency of each response. As seen in Table 4, one of the typical reasons
why students judged "Yoshiko's method" as a "wrong" procedure was "because Yoshiko didn't
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turn it upside down and multiply" (61.2% for 6th graders and 52.9% for 7th graders). They
would not allow Yoshiko to use an unfamiliar but correct procedure; still less did they try to
explore the plausibility of her method.

The students who were classified into category B seem to be more thoughtful than those
classified into category A. Some students in this category mentioned that "it's important for a
method of calculation that it can be applied to any case." However, most of them added that "If I
were Yoshiko, I would not do such a thing." They also never tiied to explore the plausibility of
Yoshiko's method. The students classified into category D were those who thought that
multiplication and division were unrelated.

Next, the responses of the students who chose "correct” were also classified by using several
categories. Sixteen categories were identified, which varied from "Yoshiko is correct because I
could get the correct answer by using her method" to "If we find a common denominator, we can
apply her method to any division by a fraction.” Some students simply wrote their method
(multiplication by the reciprocal) to calculate 2/5 + 3/4, while others wrote the explanations for the
algorithm.

Often observed were students who said "Although Yoshiko's method is correct, I prefer
turning it upside down and multiplying to her method" (44 students out of 171 who chose
“correct” (25.7%)). These students seem to have judged Yoshiko's method as "correct” by the fact
that the first division (8/15 + 2/5) using her method produced a correct answer. Some examples of

other categories are shown below with the students' calculations.

a) complex fractions: Many students (n = 25) used complex fractions when they applied

Yoshiko's method to the second division ( 2/5 + 3/4):
2/5 + 3/4 = (2/3)/(5/4) = (2/3) x 12/(5/4) x 12 = 8 + 15.
b) decimal fractions: Some students (n = 5) mentioned transferming from a common fraction to a
decimal fraction:
2/5+3/4=2/3)/(5/4)=2/3+5/4 =2+5)+(3+4)=04+0.75=40+75=8/15.
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¢) common denominator: Some other students (n = 4) found the common denominator;
2/5 + 3/4 = 8/20 + 15/20 = (8 + 15)/(20 + 20) = &/15.

d) "law of divisions": Some students (n = 5) described their explanation: of the reason why they
used "turning it upside down and multiplying," using a law of division. "Law of divisions"
means some regularities in division such as "a +b=(axc¢) + bxo)"

2/5 + 3/4 = (2/5 x 4/3) + (3/4 x 4/3) = 2/5 x 4/3.

(2) Results of Study 2

To summarize the results of the study 2, an overview of some of the major tendencies of the
students will be given.

First, the four students pairs who answered "not correct" insisted on the “incorrectness” of
Yoshiko's method. These students resisted instructional interventions. In the case of four pairs
composed of two students of different opinions, "not correct” students at first were not so resistant
to their partners. At the beginning of working on the problem, "not correct” students were
engaging in the same tasks with their partners to find out how to apply Yoshiko's method to "2/5 +
3/4" in the problem. They found some explanations for Yoshiko's method by finding such
methods as "complex fractions" or "decimal fractions” (see the results of study 1). However,
when the interviewer showed their writings in study 1, after they finished their problem solving,
they returned to say "not correct.”

In the end, only two of twelve "not correct” students were convinced to change their opinions
in the process of two-person problem solving. And after both the two-person problem solving and
the interviews, five students still held to "not correct.”

Second, during the interviews, students' beliefs about mathematics and mathematics learning
often became clear. For example, after they finished their problem solving, "student 1b" (a "not
correct" student in "pair 1," composed of two students of different opinions) often mentioned a
"rule." "The answer (gotten by the Yoshiko's method) is certainly correct. But there are two
fractions, one to which we can apply Yoshiko's method and the other to which we cannot apply

her method. Thus, the rule doesn't work. So, I think Yoshiko is not correct." Previously, on the
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written test, he had desc’ribed "(Yoshiko is not correct) because there is a rule that division of
fractions is to be calculated by exchanging the denominator and the numerator (but Yoshiko does
not use this rule))." He was a typical student who mentioned a "rule without reasons."

Another student, 3b (one of the "not correct” students in "pair 3," composed of two "not
correct” students) mentioned a "rule in the classroom," which compels her to follow the opinion of
the majority in her class. "Isn't there something like a rule? It seems to be reasonable for me in the
classroom that I follow whatever most classmates say or do, although I don't know the meaning."
These statements, and others like them, reflect students' beliefs about and attitudes toward
mathematics and mathematics learning.

Third, in study 2, a curious "students' logic" (n = 5) was identified during the instructional
intervention. When they were requested to answer a question about their wrong justification,
students often turned to the other points or the other “"examples" in their explanations. Here is an
excerpt from a protocol of interviews with student 4a (one of the two "not correct” students in "pair
4"). She kept insisting on the "incorrectness” of the Yoshiko's method as follows.

Interviewer: Finally, I ask you again, what do you think of Yoshiko's method?

Student 4a. Not correct. (Student 4b also nodded.)

Interviewer: Why is it?

Student 4a:  "2/5 divided by 3/4" means neither a division of 5 by 4 nor 2 by 3. We have to
divide one number, 2/5, by another number, 3/4. So, we cannot separate the
denominator and the numerator.

Interviewer: Then, the success by Yoshiko as to both 8/15 and 9/14 were mere happenings?

Student 4a:  Uhm...it might not happen...

Student 4b:  Didn't we try other fractions?

Student 4a:  It's something like...a statement that holds in the case of a cube but that doesn't
hold as to a rectangular prism.

Interviewer:  Then, Yoshiko's 1aethod can be applied in some cases?
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Student 4a:  Yes.

Interviewer;  1f we multiply both the numerator and the denominator of 2/5 to get 24/60
(writing on a paper), then we can apply Yoshiko's method. By doing like this,
can we apply her method to any fraction?

Student 4a:  Uhm.. it seems to be right...but...the meaning of the number sentence is...if this
(8/15 + 4/5) means a word problem, "15 divided by 5" will be a nonsense
phrase...

She seemed to behave quite "naturally" and to be “logical" in her arguments. But on some points,
her reasoning was not consistent with her own argument. Thus, although these "logics" of

reasoning differ from the logic in mathematics, it seems to represent the logic of these students.

4. Discussion
It would be hard to judge how representative the subjects in this study are of Japanese
students. Nevertheless, their responses to "Yoshiko's method" probably reveals general trends.
In this section, we will consider the results of this study from the following two points of view:
predominance of the form over the reasoning and the question of students’ validations of formal
knowledge.
(1) Predominance of the form over the reasoning: rigid thinking of students
Many students tended to insist that "Yoshiko's method” was not correct because she did not
use the "tumn it upside down and multiply algorithm" for division by a fraction. They did not
accept "Yoshiko's method" because it differed from their algorithm. Furthermore, many never
tried to explore the plausibilities of her method. They preferred the "form" of the algorithm
without taking account of the meaning. This "rigid applications of algorithm" (Gardner, 1991)
was the striking feature of most students who chose "not correct.” Gardner wrote
The ways in which mathematics is customarily taught and the ways in which students
learn conspire to bring about a situation where students perform adequately so long as
a problem is stated in a certain way and they can therefore "plug numbers” into an

equation or formula without worrying about what the numbers or symbols mean. (p.
161)
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It is true that computational algorithins are useful precisely because they do not require
reflection and that once they have been automatized, little mental effort is needed. Therefore, it is
natural for students to perform an algorithm without taking account of its meaning "so long as a
problem is stated in a certain way." It is important for them, however, when they encounter a
problem stated in an unfamiliar way, that they explore it and think about the reason why it holds
{or does not hold).

The rigidity of the students who chose "not correct,” or their flat response to "Yoshiko's
method," seemed to be shaped by their beliefs about and attitudes toward mathematics and learning
mathematics. As one sixth grader wrote “Yoshiko is not correct because there is a rule to follow;"
thus, students’ attitudes were rule-oriented. These rule-oriented attitudes toward mathematics are
well documented (e.g., Erlwanger, 1975; Schoenfeld, 1985). We cannot simply accept "high
achievement" as evidence of solid mathematical thinking.

(2) Preservation of the Jogic: students' valjdations of formal knowledge

In the mathematics program in Japan, multiplication and division of common fractions are
introduced in the sixth grade. Regarding the objectives of teaching these contents, the National
Course of Study says:

To help children undesstand the meaning of multiplication and division of fractions
and become able to use them as well as to help them deepen their understanding of
multiplication and division in general (JSME, 1990).
Thus, it is important for us to xnow the students' understanding of and underlying reasoning
concerning division by a fraction if we are to succeed in our instruction.

Understanding how procedural knowledge and conceptual knowledge relate tc one another is
one of the major foci in mathematics education. Poor performance in school mathematics often can
be traced to a separation between students' conceptual and procedural knowledge of mathematics
(Hiebert & Wearne, 1986). However, this study suggests that we have to examine "good

performance” from the same point of view in some cases.

Relating conceptual and procedural knowledge was in evidence in only a few cases, and even




then the explanations and justifications were of limited quality. Building conceptual and procedural
relationships may involve a complex process which need not require conceptual competence.
Although the bulk of the theoretical arguments supports building meaning for procedures before
practicing it for efficient execution, Noddings (1985) has suggested other possibilities. She
distinguished three different domains for mathematical activities: "informal," "formal" and
"metadomains.” In particuiar, she recognized the possibility of approaches which allow for
procedural information to provide an occasion for conceptual development. She wrote that
__we should abandon efforts to characterize mathematical learning as 'top-down’ or
'bottom-up' and instead consider all questions concerning movement through the
domains as context- or topic-bound (p. 123).
Further, she wrote that
Students are taught to handle complex fractions by standard division, for example,
but bright youngsters can certainly invent short cuts and, in doing so, they are led to
explore the structural underpinnings of their inventions. (p. 126)

A few students in this study showed that they could explain and justify their procedures,
including the "invert-and-multiply algorithm," in rather abstract ways (e.g., using a "law of
division"; a+ b = (a xc) + (b x ¢) ). It seems to be possible to construct "a knowledge base for the
procedure that is connected to a rich supply of knowledge about related procedures and concepts”
(Silver, 1986) by moving into "metadomains," say, by emphasizing "laws of division" from the
teaching of division of whole numbers.

This study suggests that we have to pay more attention to the "hidden" dimension of teaching
mathematics when we analyze high achieving students' thinking in mathematics, in general, and on

division of fractions, in particular. Finally, "students' logic," which was found in study 2, seems

to have potential for further exploration.
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NOTES

1. The research reported in this paper was partly supported by a Grant-in-Aid fer Scientific
Research (No. 05780146) from the Ministry of Education, Science and Culture. The author

thanks Professor Jere Confrey for her comments on a draft of the manuscript.

2. According to the results of the IEA study, one division item of common fractions ("3/5 + 2/7"
given in the form of (3/5)/(2/7) ) resulted in a mear. of 38% correct across countries (Robitaille,

1989, p. 107).

3. As aresult of their experiences in mathematics classrooms, students develop a set of beliefs
about mathematics and about mathematics learning. For example, many students believe that
mathematics is mostly memorization and that all mathematics problems can be solved, if at all,
in a few minutes or less (See Schoenfeld, 1985). These statements, and others like them,
reflect students' beliefs about and attitudes toward mathematics. These beliefs and attitudes
have been shaped by their experiences in mathematics classrooms despite the fact that neither
the authors of mathematics curriculum nor the teachers who taught the students had intentional
objectives related to students' beliefs about and attitudes toward mathematics. Thus, the author

uses the term "hidden.”

4. "Yoshikc" is one of the most popular female names in Japan.

5. In this problem, another "example," 9/14 + 3/7, to which we can apply "Yoshiko's method,"

was added.
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REVISION OF THE COURSE OF STUDY FOR STUDENT GUIDANCE
"IN HIGH SCHOOLS

Azuma Nagano

Science University of Tokyo

1. Correspondence for Student Diversification

Since 1990, more than 94% of Japanese junior high school graduates enter high schools every
year. With this increased entrance rate to high schools, we find more students who cannot keep up
with other students. It is becoming a social problem.

Due to social diversification, there are now so many different paths for students to choose
after graduation that we have to meet these various new needs. Another serious problem is that
more students are sHowing a tendency to dislike mathematics.

Considering such a situation, we propose a division in the teaching of mathematics. This will
make it possible for teachers to make

a. a curriculum for ML (Mathematical Literacy) as mathematics users, and

b. a curriculum for MT (Mathematical Thinking) as mathematics makers.

The common aim is to cultivate "mathematical intelligence." We propose to try to give
students experiences to make a practical use of mathematics in the learning activities. In MT, we
emphasize that these two fields are exclusive, but will supplement each other. Using compuiers
will be a big help to make the study of these fields possible.

2. The Curriculum Structure will be COM

The goal common to M L and M T is "mathematical intelligence;" that is,
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CORE

ML ,/

MT

Where ML overlaps with MT is called the "core," which will be a required subject. The other parts
are called "options," and these will be elective subjects.
The required subject is "Mathematics I" which includes
(1) quadratic functions
(a. knowing change)
(2) geometric figures and measuring
(b. measuring quantity)
(3) dealing with numbers of articles
(c. counting)
(4) probability
(d. estimating)
We will help students to know the basic usefulness and intelligence of mathematics in these
studies. The curriculum structure is as follows:
Required: Mathematics I (4 credits)
Options: Mathematics II (3 credits)
Mathematics I (3 credits)
Mathematics A (2 credits)
Mathematics B (2 credits)
Mathematics C (2 credits)
The options have three main functions, which are:

1) Remedial Option
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2) Side Option
3) Advanced Option.

Teachers can choose any of these according to their situations. There are two choices in the

elective subjects.

Mathematics I

> Mathematics A

Mathematics I

Y

Mathematics {1

\ Mathematics B

Mathematics C

@) *

O In this course, we attempt to expand and develop Mathematics 1.

X In this course, each subject offers 4 credits and students choose 2 credits from each of them.

3. Practical Use of Computers

Computers are now necessities in the information society. Also, in the circumstances of
students, computers are very common and becoming a must in our everyday lives. So, it is

necessary to use computers in the schools,
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1) as a part of the means to study mathematics, and

2) inlearning how to operate computer as users.

Mathematics A, B and C, mentioned above, include teaching materials using computers.
Thus, we expect that students will better understand and develop their powers of reasoning,
discovering, and creative thinking. Many vocational high schools offer program 2), learning how
to operate computers as users. By 1996 all high schools in Japan will have sufficient numbers of
computers for one complete class of students.

4. Problems in Preparing Curriculum

Every high school is now getting ready to teach according to the new manual for student
guidance, and also preparing to put the new curriculum into action. The problems which teachers
have are as follows :

Problem I: The subjects of the entrance examination for colleges are not fixed.

Problem 2: The curriculum is restricted by other conditions.

Problem I. Japanese college entrance examinations have a great influence on education.
About 30% of high school students enter colleges, and people are getting more concerried about
college education. So, the subjects tested in the college entrance examination heavily influence the
high school curriculum. For example, the standard test required of all twelfth-grade students
wishing to enter a university covers Mathematics I and II. Students who woulid like to take the
science courses must take examinations covering Mathematics I, basic analysis, algebra and
geometry, differential calculus, and integral calculus.

But these days some national colleges exempt mathematics entrance examinations. For these
reasons it is getting very complicated in organizing the curriculum.

Problem 2: Tt is very difficult to keep 18-19 credits for mathematics, which we have now, for
various reasons. For example, social studies needs more credits, and domestic science, physical
education, and foreign languages also need more time. Additionally, students are coming to dislike
mathematics. In spite of the fact that mathematics is becoming more important in society and that
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the demand for mathematics is increasing, we cannot give enough opportunity to students to study
mathematics in school. The contradiction between the developing needs or the one hand, and the
needs of mathematics on the other hand, is rapidly emerging. We are making efforts to solve

problems relevant to this situation.
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DATA 1
EXAMPLE OF MATHEMATICS TEX(BOOK

" MATHEMATICS I "(A required Subject)
(Completion Unit 4)

Content

CHAPTER 1: QUADRATIC FUNCTION AND GRAPH
Paragraph 1 Quadratic Function and Its Graph
! Function
2 Quadratic Function
3 Decisions of Quadratic Function
Problem
Paragraph 2 Variation of Quadratic Function
1 Max., Min. of Quadratic Function
2 Application of Max., Min.
Probiem
Exercise

CHAPTER 2: QUADRATIC FUNCTION AND QUADRATIC EQUATION
Paragraph 1 Graph of Quadratic Function and Quadratic Equation
1 Quadratic Equation
2 Graph of Quadratic and Relation of position of X Axis
Expansion: Solution of Quadratic and Factorization ~* Quadratic Expression
Problem
Exercise
Paragraph 2 Graph of Quadratic Function and Quadratic Inequality
1 Graph of Function and Inequality
2 Quadratic Inequality (1)
3 Quadratic Inequality (2)
Problem
Exercise

CEAPTER 3: DISPOSE OF THE NUMBER
P:iragraph 1 Foundation of Counting Up
1 Counting Method of Number
2 Law of Products
3 Law of Sums
4 Set and Number of Elements of a Set
Problem
Paragraph 2 Permutation and Combination
1 Permutation
2 Combination
Problem
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CHAPTER 4: PROBABILITY
Paragraph 1 Probability and Its Fundamental Theory
1 Meaning of Probability
2 Fundamental Theory of Probability
Problem
Paragraph 2 Independent Trial and Probability
1 Probability of Independent Trails
2 Probability of Multiplicity Trails
Problem :
Paragraph 3 Expectation
1 Expectation
Problem
Expansion: Expectation of Number of Base Hit of Average 40% Better

Exercise

CHAPTER 5: FIGURE AND WEIGHTING
Paragraph 1 Trigonometric Ratio of Angle
1 Right triangle and Tangent
2 Sine, Cosine
3 Mutual Relation of Trigonometric Ratio
Problem
Paragraph 2 Extension of Trigonometric Ratio
1 Trigonometric Ratio and Coordinate
2 Nature of Trigonometric Ratio
Problem
Paragraph 3 Application in Trigonometric Ratio
1 Sine Rule
2 Cosine Rule
3 Area of Tangent
Probiem
Paragraph 4 Measure of Figure
1 Measuring of Plan Figure
2 Measure of Space Figure
Problem
Exercise

245




" MATHEMATICS A"
(An Optional Subject)

Content

CHAPTER 1: NUMBER AND EXPRESSION
Paragraph 1 Law of Exponents and Integral Expression

1 Power and Laws of Exponents
2 Integral Expression
3 Addition, Subtraction, Multiplication of Integral Expression
4 Factorization
5 Quotient and Residue of Integral Expression

Problem

Paragraph 2 Real Number

1 Classification of Number
2 Absolute Value of Real Number
3 Calculation of Irrational Number

Problem

Paragraph 3 Expression and Demonstration

1 Demonstration of Equality
2 Demonstration of Inequality
3 Condition and Demonstration
4 Proof

Problem

Exercise

CHAPTER 2: SEQUENCE
Paragraph 1 Progression
1 Progression
2 Arithmetical Progression
3 Geometrical Progression
4 Varied Progression
Problem
Paragraph 2 Recurrence Formula and Mathematical Induction
1 Recurrence Formula
2 Recurrence Formula and General Term
3 Mathematical Induction
Paragraph 3 Binomial Theorem
1 Binomial Theorem
Expansion View: Fibonacci Progression Exercise
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CHAPTER 3: PLANE GEOMETRY
Paragraph 1 Triangle and Ratio
1 Fundamental Theorem
2 Ceva's Theorem
3 Menelaus's Theorem
Paragraph 2 Locus
1 Locus
2 Application of Locus
3 Power Theorem
Paragraph 3 Transformation of Figure
1 Congruent Transformation
2 Similar Transformation
Expansion View: Similarity of Quadratic Function Exercise

CHAPTER 4: CALCULATION AND COMPUTER
Paragraph 1 Operation and Computer
1 Computer
2 Direct Mode of Basic
3 Use of Variable
Expansion View: Exponential Representation of Value
Paragraph 2 Program of Basic
1 Program of Basic
2 Function of Basic
3 Repeat Calculation
Expansion View: Discovery of Gigantic Prime Number
Expansion View: Printing of Printer
Expansion View: Command FOR - STEP - NEXT
Paragraph 3 Program and Flow Chart
1 Conservation and Calling Out of Program
2 Program and Flow Chart
3 Solution of Quadratic Equation
Expansion View: 105 Subtraction
Paragraph 4 Calculation and Computer
1 Criterion of Prime Number
2 Factorization of Prime Number
3 Recurring Decimal
4 The Number of Permutation and the Number of Combination
Exercise
Expansion View: Ten Thousand Calendar




COMPUTER LITERACY IN JAPANESE HIGH SCHOOL MATHEMATICS -
COMPARE THE PRESENT-DAY MATH TEXTBOOK WITH THE REVISED
MATH TEXTBOOK

Isamu Kikuchi

Showa Daiichi High School

1. The Social Background of the Computerized World

Computers are now an indispensable part of our daily life, upon whose various aspects they
have a great influence. As hardware came to have better performance and got smaller around
1982, personal computers became less expensive, thanks to mass production, and more familiar
along with a lot of software packages. Some children use these for computer games and others
utilize them as part of their own programs. Some companies and organizations have also
introduced good PCs and software packages for various purposes: drawing up documents,
performing calculations, using as a database, and so on.

As stated above, our society is becoming more and more computerized. In order to train
students to be talented people that meet the needs of our modern advanced information-oriented
society, more and more schools have been introducing computers since 1988. Especially in the
last iwo years, almost all junior high schools and high schools have gotten enough computers for
each student in one class to use to his or her heart's content.

The present-day curriculum (announced in 1978 and put into effect in high schools in 1982)
requires teachers to instruct students in the basic principles of computer science in Mathematics II--
a subject taken mainly in the second year of upper secondary school; nevertheless, this curriculum
is far from satisfactory as an educational system that should serve the needs of advanced
information-oriented society. This is why the revised curriculum (announced in 1989 and
implemented in high schools in 1994) contains a provision that computer science should be dealt

with in junior high schools as well as in the high schools.
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2. The Current Model in High School Mathematics (Announced in
1978 and Enforced in 1982)

The First Year The Second Year The Third Year
Mathematics T |—® | AlgebrasGeometry |~ | Differential and
4 credits 3 credits Integral Calculus
Basic Analysis 3 credits
(Compulsory) 3 credits Probabilitye
Statistics
3 credits
(Optional)
Mathematics II
= 3 credits
(Optional/Elective)

* The number of credits is a standard. 1 credit is 35 lesson-hours or 35 fifty-minute periods of
study throughout the year.

Mathematics II contains the basic principles of "AlgebrasGeometry," "Basic Analysis,’
"ProbabilityeStatistics"” and "Computers and Flowcharts." This subject is expected to be taken
mainly in the second year, but most schools encourage students to take "AlgebrasGeometry" and
"Basic Analysis" because the college entrance exams have no questions concerning COmputers.
The textbooks of Mathematics II are usually thick enough to contain lots of chapters that cover the
content for 6 credits, but most schools take some chapters and leave others according to their local
conditions.

Objective of Mathematics II

To help pupils understand fundamental concepts, principles and laws in broader fields
of mathematics which follow the content studied in Mathematics I, and thereby to deepen

their appreciation of the role played by matheinatics in society.
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The aim in the present-day Mathematics II makes no mention of computers.

Content of (6) Computer and Flowcharts

* Content
(6) Computer and flowcharts
a. functions of electronic computers
b. algorithms and flowcharts
* Remarks concerning content
(3) In (6), actual experience preparing programs for the computer, running them,

and analyzing the results should be included.

How Textbooks Deal With the Current Curriculum

The Content of Mathematics II High School Mathematics A
the Curriculum (SANSEIDO) (KEIRINKAN)
(1) Probability Chap.1 Sequences p.16  Chap.l Trigonometric
and Statistics Chap.2 Differention p.26 Function p.14
(2) Vectors Chap.3 Integration p.24  Chap.2 Exponential and
(3) Differention and Chap.4 Various Functions Logarithmic Function
Integration p.34 p-18
(4) Sequences Chap.5 Vectors p.-24  Chap.3 Sequences p.16
(5) Various Functions Chap.6 Probability p.30  Chap.4 Differention p.28
(6) Computer and Chap.7 Statistics p.32  Chap.5 Integration p.22
Flowcharts Chap.8 Computer p.22  Chap.6 Vectors p.18
a. functions of (1) computer Chap.7 Permutation and
electronic computers (2) flowcharts Combination p.14
b. algorithms and (3) programing and Chap.8 Probability p.28
flowcharts calculation Chap.9 Statistics p.22
Chap.10 Computer and
Flowcharts p.21

(1) function of computer
(2) flowcharts
(3) flowchart of

calculation
(4) repetitive '
calculation
The Number of Pages 208 201
The Number of Flowcharts 13 14
The Number of Program 6 (BASIC) 1(BASIC)
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Atrticles concerning
Computers

are cominon to the
two textbooks.

assembly language,
algorithmn, arithmetic
unit, storage units,
machine language, line
number, compiler-language
output unit, set up,
initial value, control
unit, central processing
unit, data, electronic
computer, flowchart,
input unit, address,
programming, program,
stored program system,
branch, instruction,
memory, loop

arithmetic unit, storage
units, machine language,
output unit, contro! unit
data, flowchart, input
unit, program, instruction
memory, loop

3. The Predicted Model in the New Curriculum (Announced in 1989 and

Enforced in 1994)

The First Year

Mathematics I
4 credits
Mathematics A

2 credits

Mathematics I
4 credits
Mathematics A

2 credits

Tt Second Year

— 3| Mathematicsll | ——3m

3 credits
Mathematics B

2 credits

—_— Mathematics I | ———»

3 credits
Mathematics B

2 credits
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The Third Year

Mathematics III
3 credits
Mathematics C

2 credits

Mathematics I

3 credits




Mathematics I — Mathematics I | ————gm [ Mathematics I
4 credits 3 credits 2 credits
Mathematics A

2 credits

MathematicsI  [—gm| Mathematics II

4 credits 2 credits

* Mathematics I is compulsory, but the others are optional.
* The number of credits is a standard. 1 credit is 35 lesson-hours or 35 fifty-minute periods of
study throughout the year.

The new curriculum is implemented in the next school year, and it is almost impossible to
foresee which type of the above four most schools will adopt. It must also be added that textbooks
of Mathematics A, B, and C are all thick enough to contain the content for 4 credits. Twenty-three
kinds of textbooks of Mathematics I and Mathematics A are published with 12 companies. The
others have not yet been published.

Objective of Mathematics A

As a broader content than "Mathematics I," to help students understand numbers and
algebraic expressions, plane geometry, sequences or computation using computers, to
encourage them to master basic knowledge and skills, and to develop their abilities to think

and cope mathematically in dealing with various phenomena.

Mathematics A sets a clear goal about computers which Mathematics Il makes no mention of.




Content of (4) Computation and Computer

* Content
(4) Computation and Computer
a. Operation of computer
b. Flowchart and programming
c¢. Calculation using computer

» Remarks concerning Content

(6) As for the content (4)-b, the teachers should put their emphasis on helping students'
understanding of the structure of programming, but only short programs should be
treated. As for the content (4)-c, use of the computer should be at the level of using

it for processing those computations that concern what students have learned in the

lower secondary level or "Mathema*«s I"

How Textbooks Deal With the New Curriculum

The Content of
the Curriculum

Mathematics A
(SANSEIDO)

High Scheol Mathematics A
(KEIRINKAN)

(1) Numbers and
Algebraic Expressions

(2) Plane Geometry

(3) Sequences

(4) Computation and
Computer

Chap.1 Numbers and
Algebraic Expression

a. Operation of computer Chap.4 Computation and

b. Flowchart and

p.36
Chap.2 Sequences p.34
Chap.3 Plane Geometry
p.36
Computer p.28
@) function of computer

Chap.1 Numbers and
Algebraic Expression
p-50
Chap.2 Sequences p.38
Chap.3 Plane Geometry
p-42
Chap.4 Computation and
Computer p.47
(N operation of computer

programming (2) program in BASIC (2) flowchart
c. Calculation using 3 calculation using (3) calculation using
computer spreadsheet computer
The Number of Pages 134 177
The Number of Flowcharts 4 9
The Number of Programs 11 (BASIC) 2 4 (BASIC)
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Articles concerning
Computers

are common to the
two textbooks.

symbol of operation,
keyboard, storage, storage
unit, row, line number,
delete,

repetitive statement,
repetitive variable,
summary sheet,
integrated circuit,

output, output unit,
conditional statement,
chip, central processing
unit, display, flowchart -
jump statement, input,
input unit, input
statement, hardware, hard
disk, spreadsheet,
program, programming
language, floppy disk,
printer, BASIC, menu,
sequence, worksheet

application software,
operating system,
keyboard, line number,
computer system, output,
initial value, direct

mode, display, flowchart
input, hardware, file,

file name, program,
programming language,
program mode, branch
condition, Basic, variable
variable name, main frame
infinite loop,
unconditional branch,
instruction word

Objective of Mathematics B

various phenomena.

As more advanced content than "Mathematics I" and "Mathematics II," to help students
understand vectors, complex numbers and the complex number plane, probability
distribution, or algorithm using computer, and to encourage them to master basic knowledge

and skills, and to develop their abilities to think and cope mathematically in dealing with

Content of (4) Algorithm and Computer

+ Content

(4) Algorithm and Computer
a. Function of computer
b. Program ¢ various algorithms
* Remarks concerning Content
(5) As for the content (4)-b, programming should be restricted to the level of the

Euclidean algorithm and calculation of roots by iteration.
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Objective of Mathematics C

Through using computers from the viewpoint of applied mathematical science, to heip
students understand matrix and linear computation, various curves, numerical computation or
statistics, and to encourage them to master knowledge and skills, and to develop their abilities

to think and cope mathematically in dealing with various phenomena.

Content of (2) Various Curves

« Content
(2) Various Curves
a. Algebraic expressions and geometrical figures
1. curve represented by equation
2. ellipse and hyperbola
b. Parametric representation and polar coordinate
1. parametric representation and polar coordinate
2. polar coordinate and polar equation
3. wvarious curves
» Remarks concerning Content
(3)  As for the content (2), the teacher should help studenis observe and consider
various curves by making use of computers and others, and become atie to actually

draw simple geometrical figures.

The new curriculum requires teachers to instruct students in computer science both in
Mathematics B and in Mathematics C. The aim singles computers out for special mention.
4. Conclusion

Let us compare the new curriculum with the current one concerning computers. Mathematics
A aims to train students to be proficient in operating computers, processing data with software
packages and supplying computers with programs; on the other hand, Mathematics II contains only

notational content about computers.
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I insist that math teachers should seize the opportunity of the change of the curriculum to take
the initiative in instructing students in computer science. Math teachers on the job may be most
insensitive to the changes of society. We must no longer say nonchalantly that it's unnecessary to
teach content that is not given in the entrance exams. Whether the new curriculum will be

successful or not depends on our enthusiasm for the educational reform.
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ON SCHOOL MATHEMATICS CURRICULUM DESIGN

Ersheng Ding

Beijing Normal University

The reform of mathematics education always focuses on the reform of the mathematics
curriculum. Since 1958, I have participated in several projects of schcol mathematics curriculum
design. During the period of more than thirty years, I have gradually found some rules of
mathematics curriculum development.

There are three principle factors which impact, control and determine mathematics curriculum
development. They are the demands from social, political and economical development, the
demands from the development of mathematics, and the demands from the development of
education. The development of mathematics curriculum is determined by the homogeneous
integration of these three factors. This paper will interpret how to integrate them in order to
improve the development of the school mathematics curriculum, based on the experiment of the

"Expcsimental Textbook of School Mathematics" (briefly "Experimental Textbook" below).

I. The Demands From the Development of Society

Of all the impetuses which impreve curriculum developmert, none is greater than that exerted
by social development. The demands from social development are as follows.

1. Help to achieve the goals of education. Education should serve the Chinese socialist
economic construction. Recently, Chinese society is being transformed from industrial into
informational. More and more people will engage in management and the production of
information, and the period of renewal of knowizdge and the lifespan of professions are being
shortened. In order to adapt to the rapidly changing society, we should highly enhance the quality
and capacity of the people, so as to enable them to have the ability for lifelong learning.

2. Practicality. The school mathematics content should be useful. It may be used to solve
practical problems in social production and in social life. It may be used to train students in
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thinking. Thus, the curriculum content should be supplemented with some applied mathematics,
such as computer literacy, statistics and theory of probability.

Mathematics is not only a tool for solving practical problems, but it is also used to train people
in independent thinking, tc foster students' mathematical quality; i.e. understanding the value of
mathematics, confidence in their ability to do mathematics, abilities to communicate
mathematically, and to reasoning mathematically.

3. Ideology and educativeness. Students should be developed in an all-round way--morally,
intellectually and physically, with high ideals, and a deep love for the Motherland. Thus, the
mathematics curriculum should introduce certain materials from the Chinese history of mathematics
and should explain the curriculum content from a dialectical mateiialism point of view.

In order to meet the above demands, the "Experimental Text" takes the guideline: "to make the

curriculum content fundamental, simple, and practical.”

II. The Demands From the Development of Mathematics
1. A close coordination as a whole of the most fundamental parts of algebra, geometry,
analysis and the theory of probability.

Algebra, geometry and analysis are widely applied to solve practical problems in related
subjects. Therefore, the schooi mathematics curriculum should coordinate them as a whole. In the
1950s' and 1960s of this century, there appeared the design of algebraic structuralizing school
mathematics curriculum, as well as some project of analyzing mathematics. However, they were
not successful. One of the reasons for the failure may be that the design didn't meet the "close
coordination" requirement.

2. Appropriate implementation of some applied mathematics. After World War II, applied
mathematics is rapidly developing, many new branches have arisen and the scope for applications
is quickly widening. The theory of probability, statistics, computer literacy and discrete

mathematics are included in mathematics curriculum.




3. The embodiment of systematicness. According to the views of Bourbaki, every
mathematics system can be reduced to three basic structures: algebraic, order, and topological.
Hence, in order to meet the requirement from the structure of mathematics knowledge, the school

mathematics curriculum should have a certain degree of systematicness and precision in logic.
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A SURVEY OF DOING SUMS ON A MENTAL ABACUS

Dexiang Tang

Ningbo Education College

There is an ordinary primary school, Minghe Primary School, in Cixi of Ningbo, which is
located in Zhejiang Province in China. A very common teacher of arithmetic, together with some
other teachers, has turned out a number of child prodigies who have "supernatural” abilities
in calculation. This has caused a sensation throughout the world. They have been invited to visit
various countries, including the U.S. and Japan, and those who saw their performance were so
amazed that they turned up their thumbs in praise, saying "OK."

There were several primary school students doing an arithmetic problem mentally: $370 +
4783 + 3254 + 61493 + 15879 + 97426 + 73421 — 86543 + 59384 + 2873 = ? In less than 25
seconds, they got the answer which were on the slips of paper in their raised hands: 24134 The
answer was verified to be correct by a calculator. It was breathtaking to notice that scarcely had the
problem been assigned, when the kids raised their hands with the correct answer. They didn't use
a pen or an abacus; they only used their heads.

That was the result of employing the method of doing sums on a mental abacus. This can also
be applied to multiplication with multi-figure numbers as well as the extraction of aroot. The
method can be summed up as "using an abacus in the head," as if the abacus has been established
inside one's head, the figures being the beads on the mental abacus. Even a big, complicated sum
can be worked out by this "psychological abacus" (mental abacus), and the answer is quickly and
correctly obtained. Here is one more example. Before a problem like 25137 x 687 = ? is given,
the kids will have 25137 x 687 = (25137 x 600) + (25137 x 80) + (25137 x 7). And after all the
individual products are put together, they get the result. This comglicated precess is done by way
of the "mental abacus."

Psychology proves that children at an age from 6 to 11 years are good at thinking in images
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and imitation. What they have done with their hands will leave a deep impression on them. So,
the approach of teaching young students to do sums on a mental abacus conforms to this
psychological characteristic of the young.

It generally takes three years to master doing sums on a mental abacus. The instruction can be
divided info three stages: (1) The student is required to do calculations on the abacus - practice
moving the beads while looking at them until the student is highly skillful in using the abacus. (2)
The student is required to look at the abacus without touching the beads. By using the abacus
mentally, the student fir ally acquires the ability to skillfully do sums as when the abacus is actually
touched. (3) The student is required to imagine that there is an abacus in his/her head, and can read
various sums on this "mental abacus” as if the beads were being moved. The student practices
simple problems first, and then complicated problems, until finally it is possible to do any problem
automatically.

This teaching method in arithmetic has evolved from the training conducted in a group of
calculation-lovers on an abacus among the students. In their activities, they used to combine the
three ways (using an abacus, a pen, and the head) in calculation. The inventor of the present way
of doing sums on a mental abacus is none other than an ordinary teacher of arithmetic in Minghe
Primary School, Mr. Wang Weida. He took great pains to persist in his experiment, and
succeeded in enhancing the level of the time-honored skill in using the ancient Chinese abacus. He
has opened up vast vistas for the mastery of the abacus calculation by many more ordinary people.
This has also contributed to the reform of the teaching and learning in both primary and middle
schools, breaking a new path for us to achieve a higher quality in teaching on a wide scale .

The practice of teaching students to do sums by means of a mental abacus has effectively
enhanced the students’ level of understanding and intelligence and their proficiency in calculation.
The students have been more efficient in their study, better in thinking, more clever and deft, more
will-powered and have been playing a better role in the main body of education. Now there are

2600 students in 53 study classes in Cixi, who are learning the method of doing sums on a mental
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abacus. The result of the experiment has proved that these students are better than the average ones
as far as the level of intelligence and speed of doing sums are concerned.

We are justified to say that doing sums on a mental abacus has borne new fruit in exploiting

the students' psychological factors and reinforcing practice in the field of education.
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THE MATHEMATICS OLYMPIAD AND MATHEMATICS EDUCATION IN
QINGDAG, CHINA

Guoging Guo

Teaching Research Center of Qingdao

The Mathematics Oiympiad (MO) has already become an important part of mathematics
education in China. It is a mass extracurricular activity which is loved by most of the middle
school and primary school pupils. No doubt the Chinese Mathematics Competition was influenced
by the former Soviet Union. When I visited the Moscow Lenin Normal University in 1990, I could
feel that the mathematical education thought in China and Russia are much alike today.

In 1956, at the suggestion of Hua Logeng and Su Bugqing, the two famous mathematicians in
China, the senior middle school mathematics competitions were held in the four big cities (Beijing,
Shanghai, etc.). In 1962 and 1978 the second and third mathematics ~ompetitions were set off.
Eight cities and provinces initiated a mathematics competition which had an influence on the whole
country, except Taiwan province. Since 1980, the nationwide Mathematics Competition has been
held every year. In making the examination papers, we adopt the same method as the International
Mathematics Olympiad (IMO). In 1985, the same kind of competition spread over the junior
middle and primary schools. Among them the most important one is Hua Logeng Gold Cup
Invitation tournament.

The Mathematics Olympiad of primary schools is the official competition accepted by the
National Commission of Education in China. It is held on a large scale. The competitions are
divided into two steps. Every school can send participants to the preliminary competition. After
being selected, the participants are concentrated immediately into the cities or districts. Then they
take part in the final competition. The examination papers are checked uniformly in cities and in
districts, and the papers with high marks must be sent to the competition committee of the province
to be verified and approved. From this year (1993), a general final is added. Two teams (6
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players) can be organized by each province. Qingdao won the first place among 53 teams.

Since 1985, Chinese middle school students began to take part in the International
Mathematics Olympiad and won the first place in 1989, 1991, 1992, 1993. In the past years, the
practice of mathematics competitions has shown clearly that the competition has been useful to
heighten the quality of mathematics teaching in the middle and primary schools.

The MO has furnished many useful tasks and experiences in problem solving. A professor of
Moscow University once made a speech "What does problem solving mean?" Her answer is that
“problem solving means to change the problems buing solved into solved ones.” In normal
classroom teaching, we help students to solve conventional, routine, and familiar problems, and
then to solve new, unfamiliar, and non-routine problems. However, the problems that appear in
the mathematics competitions are problems with changing and developing forms. We encourage
all pupils to join the mathematics competitions at the various levels. This includes the lower levels,
just like classroom teaching.

The MO must take, as a basis, just the ordinary lessons. We put most of our energy into
reformation of everyday teaching in Qingc 20. In 1980, we launched a plan to enhance the quality
in mathematics teaching on a large scale in the junior middle schools. The research is divided into
six stages:

1. 1980-1981 Inguisition

2. 1981-1983 Commenting on one's teaching and choosing a good teaching model

3. 1984-1986 Running experimental classes

4. 1987-1988  Summing up and spreading the experience. Two successful models are
used in the whole Qingdao City.

5. 1989-1992 Comparing and improving the model

6. 1993-1996 The second round for investigation.

Accompanying the rise in the quality of mathematics teaching, the achievement of the MC has
been heightened year by year. The number of students who take part in the mathematics
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competitions now reaches over 20,000 students every year. Winning a lot of medals in the
mathematics competitions is not just an occasional event. Similarly, Chinese students won first
place in the IMO - this is also a result of improving the ordinary teaching of mathematics.
However, a question has now been raised from the circle of Chinese mathematics education: "We
wonder if Chinese pupils can achieve a high score in a written time-limited examination only, but

what about their creative ability in mathematics?" We are not sure.




CLOSING CEREMONY

Remarks by Professors Sawada and Becker:
Colleagues and friends:

First we would like to acknowledge and congratulate the Chinese on the remarkable
success of their students on the International Mathematics Olympiads.

In his talk earlier in Shanghai, Professor Chen Changping asked the question "Why is it a
pleasure to meet people from far away?" And then he answered the question by commenting
“Because it is a pleasure to meet and talk with people with similar interests." In this case, it is
mathematics educators from three different countries, and the common interest is probler solving
in mathematics. We concur with Professor Chen.

To make a meeting such as this really useful, adequate arrangements need to be made. The
arrangements for our meeting have been handled by Professor Zhang Dianzhou in an excellent and
outstanding manner. When we say arrangements, we mean much more than the physical
arr _gements, which have been superb. We mean arranging the intellectual and scholarly aspects
of the program - that is, organizing a program in which participants write papers for, and present
to, the seminar participants for consideration and discussion. All our colleagues join us in praising
Professor Zhang for the contributions he has made towards setting a seminar agenda that has been
full of ideas, analyses, opinions and discussion. The agenda has been so significant and the
seminar so successful that we nave already considered possible topics for a follow-up conference
in the future.

The Japanese and U.S. delegates feel it is a great honor to be in China, and now here in
Qingdao, for the China-Japan-U.S. Seminar on Problem Solving. Before coming, we were
already aware of the fine traditions in mathematics and mathematics education in China. And now
we feel that cur respective delegations have learned a great deal more from the work of our Chinese

colleagues in this Seminar.
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Long before the Seminar, Professor Zhang communicated with us wiih respect to the
scholarly content of the program and various logistical matters. He and his colleagues
subsequently shaped a program for the Seminar that was excellent in all its aspects. And they also
looked after other matters, such as our arrival in Shanghai, where we were met at the airport and
welcomed in a warm and friendly manner. We were escorted to our lodging facilities and helped to
get comfortably settled. We were made to feel welcome in every way possible by Professor Zhang
and his colleagues in Shanghai, Qufu, Weifang and Qingdao.

The Seminar program and format was set in an exemplary manner when the Seminar first
got underway in Shanghai. The Shanghai component was successful with interesting papers
presented and useful, interesting and instructive reactions from the listeners. The overnight train
journey from Shanghai and the visit to Qufu, which included sightseeing at the Confucious Palace
and Mansion, and an excellent visit to Qufu Teachers College, are experiences that we will always
remember. The Mathematics Conference in Weifang provided yet another dimension to the useful
interaction that was begun in Shanghai. Here again, the conference was excellent in all respects,
and we were especially honored to be part of the opening cercmoﬁy of the important Houzhen
Institute for Mathematics Education. -

Now we are all happy to be here at the Qingdao Teaching Research Center where we are
having the closing session for our Seminar. Here, too, the traditionally warm and friendly Chinese
welcome has been given and the Seminar has continued in the excellent fashion as in Shanghai and
Weifang.

So, to Professor Zhang Dianzhou, his colleagues and to all our old and new friends, we
say 'Thank you.' We hereby express our profound gratitude for the privilege and honor of

participating in this Seminar and visiting the important Chinese centers of work in mathematics

education.
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